【題目】已知在四棱錐中,底面是矩形,平面,分別是,的中點(diǎn),與平面所成的角的正切值是;

(1)求證:平面;

(2)求二面角的正切值.

【答案】(1)見(jiàn)證明;(2)

【解析】

1)取的中點(diǎn),連接,通過(guò)證明四邊形是平行四邊形,證得,從而證得平面.2)連接,證得與平面所成角.根據(jù)的值求得的長(zhǎng),作出二面角的平面角并證明,解直角三角形求得二面角的正切值.

(1)證明:取的中點(diǎn),連接.∵中點(diǎn)

的中點(diǎn),∴

,從而四邊形是平行四邊形, 故

平面,平面,∴

(2)∵平面,∴在平面內(nèi)的射影

與平面所成角,

四邊形為矩形,

,∴,

過(guò)點(diǎn)作的延長(zhǎng)線于,連接,

平面

據(jù)三垂線定理知.∴是二面角的平面角

易知道為等腰直角三角形,∴

=

∴二面角的正切值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐,底面為直角梯形,,,.

(1)求證:平面平面;

(2)若直線與平面所成角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿足:|a2﹣a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)m,使得 ?若存在,求m的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定區(qū)域D: .令點(diǎn)集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的點(diǎn)},則T中的點(diǎn)共確定條不同的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔仔細(xì)算相還”,其大意為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,則該人第五天走的路程為(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電影院共有個(gè)座位.某天,這家電影院上、下午各演一場(chǎng)電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人, 1010人,2019人(同一所學(xué)校的學(xué)生有的看上午場(chǎng),也有的看下午場(chǎng),但每人只能看一-場(chǎng)).已知無(wú)論如何排座位,這天觀影時(shí)總存在這樣的一個(gè)座位,上、 下午在這個(gè)座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有( )

A. 12個(gè) B. 11個(gè) C. 10個(gè) D. 前三個(gè)答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)得河對(duì)岸塔的高,先在河岸上選一點(diǎn),使在塔底的正東方向上,測(cè)得點(diǎn)的仰角為60°,再由點(diǎn)沿北偏東15°方向走到位置,測(cè)得,則塔的高是(單位:)( )

A. B. C. D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和向量

(1)若向量與向量同向,且,求點(diǎn)的坐標(biāo);

(2)若向量與向量的夾角是鈍角,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:在正方體中,設(shè)直線與平面所成角為,二面角的大小為,則為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案