已知函數(shù),若函數(shù)為奇函數(shù),求的值.
(2)若,有唯一實(shí)數(shù)解,求的取值范圍.
(3)若,則是否存在實(shí)數(shù),使得函數(shù)的定義域和值域都為。若存在,求出的值;若不存在,請說明理由.

(1);(2);(3)不存在實(shí)數(shù)滿足題意.

解析試題分析:(1)由是定義在上的奇函數(shù),可知,從中求出的值;(2)將原不等式化簡,最后可將問題轉(zhuǎn)化為方程上有唯一解,令,則
從而求出的取值范圍;(3)由函數(shù)上是增函數(shù),可得到上是增函數(shù),假設(shè)存在,使得函數(shù)的定義域和值域都為,則,而這兩個(gè)等式都無解,所以不存在滿足題意.
試題解析:
(1)為奇函數(shù)   
       
(2)
,則問題轉(zhuǎn)化為方程上有唯一解.
,則
(3)不存在實(shí)數(shù)滿足題意,
上是增函數(shù)上是增函數(shù)
假設(shè)存在實(shí)數(shù)、滿足題意,有
       
式左邊,右邊,故式無解.
同理式無解.
故不存在實(shí)數(shù)滿足題意.
考點(diǎn):本題考查了函數(shù)的奇偶性,單調(diào)性以及函數(shù)的定義域和值域之間的關(guān)系,同時(shí)也考查了函數(shù)和方程的數(shù)學(xué)思想,是一道綜合題,難度適中.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)當(dāng)時(shí),判斷的單調(diào)性,并說明理由;
(3)求實(shí)數(shù)的范圍,使得對于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給出函數(shù)
求函數(shù)的定義域;
判斷函數(shù)的奇偶性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),指出的單調(diào)遞減區(qū)間和奇偶性(不需說明理由);
(2)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(3)若對任何不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù),記
(Ⅰ)求函數(shù)的定義域及其零點(diǎn);
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在區(qū)間上是增函數(shù).
(1)求實(shí)數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個(gè)非零實(shí)根為、.試問:是否存在實(shí)數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

湖南省環(huán)保研究所對長沙市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻x的關(guān)系為,其中a是與氣象有關(guān)的參數(shù),且,若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作.
(Ⅰ)令,求t的取值范圍;
(Ⅱ)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的最小值為,且關(guān)于的一元二次不等式的解集為
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中,求函數(shù)時(shí)的最大值
(Ⅲ)若為實(shí)數(shù)),對任意,總存在使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是定義在上的增函數(shù),且
(1)、求的值;(2)、若,解不等式.

查看答案和解析>>

同步練習(xí)冊答案