是定義在上的增函數(shù),且
(1)、求的值;(2)、若,解不等式.

(1); (2)

解析試題分析:(1)結合通過賦值可得;(2)先由抽象函數(shù)的性質可求得,從而將不等式轉化為,再利用函數(shù)的單調性和定義域解得的取值范圍,即:.本題注意通過賦值處理抽象函數(shù)的方法,易錯點是容易漏掉函數(shù)定義域的考慮.
試題解析:⑴在等式中令,則;       3分
⑵在等式中令,
 ,       7分
故原不等式為:,
上為增函數(shù),故原不等式等價于:
即:    12分
考點:1.抽象函數(shù);2.函數(shù)的單調性;3.解不等式

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若函數(shù)為奇函數(shù),求的值.
(2)若,有唯一實數(shù)解,求的取值范圍.
(3)若,則是否存在實數(shù),使得函數(shù)的定義域和值域都為。若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若非零函數(shù)對任意實數(shù)均有,且當
(1)求證:;
(2)求證:為R上的減函數(shù);
(3)當時, 對恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設定義在上的奇函數(shù)
(1).求值;(4分)
(2).若上單調遞增,且,求實數(shù)的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義域為R的奇函數(shù),,
⑴求實數(shù)的值;
⑵若在x∈[2,3]上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的奇函數(shù),且上是減函數(shù),解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,畫出函數(shù)的簡圖,并指出的單調遞減區(qū)間;
(2)若函數(shù)有4個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)當時,判斷并證明的奇偶性;
(2)是否存在實數(shù),使得是奇函數(shù)?若存在,求出;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)不等式對一切R恒成立,求實數(shù)的取值范圍;
(2)已知是定義在上的奇函數(shù),當時,,求的解析式.

查看答案和解析>>

同步練習冊答案