【題目】函數(shù)同時滿足:①對于定義域上的任意,恒有;②對于定義域上的任意.當(dāng),恒有.則稱函數(shù)為“理想函數(shù)”,則下列三個函數(shù)中:
(1),
(2),
(3).
稱為“理想函數(shù)”的有 (填序號)
【答案】(3)
【解析】
∵函數(shù)f(x)同時滿足①對于定義域上的任意x,恒有f(x)+f(x)=0;
②對于定義域上的任意,當(dāng)時,恒有,則稱函數(shù)f(x)為“理想函數(shù)”,
∴“理想函數(shù)”既是奇函數(shù),又是減函數(shù),
在(1)中,是奇函數(shù),但不是增函數(shù),故(1)不是“理想函數(shù)”;
在(2)中,,是偶函數(shù),且在(∞,0)內(nèi)是減函數(shù),在(0,+∞)內(nèi)是增函數(shù),故(2)不是“理想函數(shù)”;
在(3)中,是奇函數(shù),且是減函數(shù),故(3)能被稱為“理想函數(shù)”。
故答案為:(3).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校某次N名學(xué)生的學(xué)科能力測評成績(滿分120分)的頻率分布直方圖如下,已知分數(shù)在100﹣110的學(xué)生數(shù)有21人
(1)求總?cè)藬?shù)N和分數(shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準備從分數(shù)在110﹣115的n名學(xué)生(女生占 )中選3位分配給A老師進行指導(dǎo),設(shè)隨機變量ξ表示選出的3位學(xué)生中女生的人數(shù),求ξ的分布列與數(shù)學(xué)期望Eξ;
(3)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)建議,對他前7次考試的數(shù)學(xué)成績x、物理成績y進行分析,該生7次考試成績?nèi)绫?
數(shù)學(xué)(x) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理(y) | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,求出y關(guān)于x的線性回歸方程 = x+ .若該生的數(shù)學(xué)成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計分別為 = , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在“三關(guān)心”(即關(guān)心家庭、關(guān)心學(xué)校、關(guān)心社會)的專題中,對個稅起征點問題進行了學(xué)習(xí)調(diào)查.學(xué)校決定從高一年級800人,高二年級1000人,高三年級800人中按分層抽樣的方法共抽取13人進行談話,其中認為個稅起征點為3000元的有3人,認為個稅起征點為4000元的有6人,認為個稅起征點為 5000元的有4人.
(1)求高一年級、高二年級、高三年級分別抽取多少人?
(2)從13人中選出3人,求至少有1人認為個稅起征點為4000元的概率;
(3)記從13人中選出3人中認為個稅起征點為4000元的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,首項a1=1,且a1 , a2 , a4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an+2 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)和在的圖象如圖所示:
給出下列四個命題:
(1)方程有且僅有6個根;
(2)方程有且僅有3個根;
(3)方程有且僅有5個根;
(4)方程有且僅有4個根.
其中正確命題的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*)
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項公式,并證明你的結(jié)論.
(2)若cn=log2(),Sn=c1+c2+…+cn , 試問是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1= , b2= , 對任意n∈N* , 都有bn+12=bnbn+2 .
求數(shù)列{an}、{bn}的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com