【題目】設(shè)函數(shù)f(x)=,若對(duì)任意x1∈(-∞,0),總存在x2∈使得,則實(shí)數(shù)a的范圍 _____
【答案】
【解析】
由題意可得:,分類(lèi)討論a>0,a=0,a<0,結(jié)合導(dǎo)數(shù)求得最小值,解不等式即可得到所求范圍.
若對(duì)任意x1∈(-∞,0),總存在x2∈使得,即.
當(dāng)a≠0時(shí),當(dāng)x=時(shí),-ax2=0.
①當(dāng)a=0時(shí),f(x)=在(-∞,0)上的值域?yàn)?/span>(0,+∞),滿足要求;
②當(dāng)a<0時(shí),f(x1)min=f()=0,而f(x2)>0恒成立,所以不可能有f(x2)≤f(x1);
③當(dāng)0<a≤時(shí),f(x2)min=f()=0,而f(x1)≥0恒成立,滿足要求;
④當(dāng)a>時(shí),設(shè)g(x)=-ax2,則g′(x)=--2ax=
易得g(x)在上遞增,在上遞減,在(2,)單調(diào)遞減
所以,
所以
綜上:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市從年甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取個(gè),并按、、、、分組,得到頻率分布直方圖如圖,假設(shè)甲、乙兩種酸奶獨(dú)立銷(xiāo)售且日銷(xiāo)售量相互獨(dú)立.
(1)寫(xiě)出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷(xiāo)售量(單位:箱)的方差分別為、,試比較與的大小;(只需寫(xiě)出結(jié)論)
(2)估計(jì)在未來(lái)的某一天里,甲、乙兩種酸奶的銷(xiāo)售量恰有一個(gè)高于箱且另一個(gè)不高于箱的概率;
(3)設(shè)表示在未來(lái)天內(nèi)甲種酸奶的日銷(xiāo)售量不高于箱的天數(shù),以日留住量落入各組的頻率為概率,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線l交橢圓C于P,Q兩點(diǎn),直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓〔>b>0〕與拋物線有共同的焦點(diǎn)F,且兩曲線在第一象限的交點(diǎn)為M,滿足.
(1)求橢圓的方程;
(2)過(guò)點(diǎn),斜率為的直線與橢圓交于兩點(diǎn),設(shè),假設(shè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年7曰1日至3日,世界新能源汽車(chē)大會(huì)在海南博鰲召開(kāi),大會(huì)著眼于全球汽車(chē)產(chǎn)業(yè)的轉(zhuǎn)型升級(jí)和生態(tài)環(huán)境的持續(xù)改善.某汽車(chē)公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車(chē),并在出廠前對(duì)100輛汽車(chē)進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車(chē)所裝載的燃料或電池所能夠提供給車(chē)行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如下的頻率分布直方圖:
(1)估計(jì)這100輛汽車(chē)的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).
(2)根據(jù)大量的汽車(chē)測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車(chē)的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,現(xiàn)任取一輛汽車(chē),求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率.
參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布,則,,.
(3)某汽車(chē)銷(xiāo)售公司為推廣此款新能源汽車(chē),現(xiàn)面向意向客戶推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn),若遙控車(chē)最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車(chē)優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車(chē)開(kāi)始在第0格,客戶每擲一次硬幣,遙控車(chē)車(chē)向前移動(dòng)一次,若擲出正面,遙控車(chē)向前移動(dòng)一格(從到),若擲出反面,遙控車(chē)向前移動(dòng)兩格(從到),直到遙控車(chē)移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束,設(shè)遙控車(chē)移到第n格的概率為,試說(shuō)明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買(mǎi)該款新能源汽車(chē).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),昆明加大了特色農(nóng)業(yè)建設(shè),其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有“全國(guó)10支鮮花7支產(chǎn)自斗南”之說(shuō),享有“金斗南”的美譽(yù).為進(jìn)一步了解鮮花品種的銷(xiāo)售情況,現(xiàn)隨機(jī)抽取甲、乙兩戶斗南花農(nóng),對(duì)其連續(xù)5日的玫瑰花日銷(xiāo)售情況進(jìn)行跟蹤調(diào)查,將日銷(xiāo)售量作為樣本繪制成莖葉圖如下,單位:扎(20支/扎).
(1)求甲、乙兩戶花農(nóng)連續(xù)5日的日均銷(xiāo)售量,并比較兩戶花農(nóng)連續(xù)5日銷(xiāo)售量的穩(wěn)定性;
(2)從兩戶花農(nóng)連續(xù)5日的銷(xiāo)售量中各隨機(jī)抽取一個(gè),求甲的銷(xiāo)售量比乙的銷(xiāo)售量高的概率·
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓,若圓的一條切線與橢圓有兩個(gè)交點(diǎn),且.
(1)求圓的方程;
(2)已知橢圓的上頂點(diǎn)為,點(diǎn)在圓上,直線與橢圓相交于另一點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線方程為.
(1)求的值;
(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問(wèn)題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓。ê(jiǎn)稱(chēng)為弧田的。┖鸵詧A弧的端點(diǎn)為端點(diǎn)的線段(簡(jiǎn)稱(chēng) (弧田的弦)圍成的平面圖形,公式中“弦”指的是弧田的弦長(zhǎng),“矢”等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長(zhǎng)等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com