2.已知橢圓以拋物線y2=4x的頂點為中心,以此拋物線的焦點為右焦點,又橢圓的短軸長為2,則此橢圓方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.

分析 由題意,橢圓的焦點在x軸上,且b=1,c=1,求出a,即可求出橢圓方程.

解答 解:由題意,橢圓的焦點在x軸上,且b=1,c=1,
∴a=$\sqrt{2}$,
∴橢圓方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1.
故答案為:$\frac{{x}^{2}}{2}+{y}^{2}$=1.

點評 本題考查橢圓、拋物線的性質,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.求平行于直線2x-y+10=0且與兩坐標軸圍成的三角形的面積為9的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)過點Q(-1,$\frac{\sqrt{2}}{2}$),且離心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知過點(2,0)的直線l與該橢圓相交于A、B兩點,當|AB|=$\frac{2\sqrt{5}}{3}$時,求直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在對兩個變量x、y進行線性回歸分析時一般有下列步驟:
①對所求出的回歸方程作出解釋;②收集數(shù)據(jù)(xi,yi),i=1,2,…n
③求線性回歸方程;                  ④根據(jù)所搜集的數(shù)據(jù)繪制散點圖.
若根據(jù)實際情況能夠判定變量x、y具有線性相關性,則在下列操作順序中正確的是( 。
A.①②④③B.③②④①C.②③①④D.②④③①

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.一個幾何體的三視圖如圖所示,正視圖與側視圖為全等的矩形,俯視圖為正方形,則該幾何體的表面積為28+4$\sqrt{10}$;體積為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)為奇函數(shù),且當x<0時,f(x)=x2-$\frac{1}{x}$,則f(1)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖給出了冪函數(shù)y=xa,y=xb,y=xc的圖象,則實數(shù)a,b,c,0,1的大小關系為a>1>b>0>c.(五個數(shù)從小到大排列)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知向量$\overrightarrow m$=(1,7)與向量$\overrightarrow n$=(tanα,18+tanα)平行,則tan2α的值為( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.過曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點F1作曲線C2:x2+y2=a2的切線,設切點為M,延長F1M交曲線C3:y2=2px(p>0)于點N,其中C1,C3有一個共同的焦點,若$\overrightarrow{M{F_1}}+\overrightarrow{MN}$=$\overrightarrow 0$,則曲線C1的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{2}+1}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步練習冊答案