16.已知i為虛數(shù)單位,a∈R,若$\frac{2-i}{a+i}$為純虛數(shù),則復(fù)數(shù)z=2a+$\sqrt{2}$i的模等于( 。
A.$\sqrt{2}$B.$\sqrt{11}$C.$\sqrt{3}$D.$\sqrt{6}$

分析 利用復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義、模的計(jì)算公式即可得出.

解答 解:$\frac{2-i}{a+i}$=$\frac{(2-i)(a-i)}{(a+i)(a-i)}$=$\frac{2a-1-(2+a)i}{{a}^{2}+1}$為純虛數(shù),∴$\left\{\begin{array}{l}{2a-1=0}\\{-(2+a)≠0}\end{array}\right.$,解得a=$\frac{1}{2}$.
則復(fù)數(shù)z=2a+$\sqrt{2}$i=1+$\sqrt{2}$i.
∴|z|=$\sqrt{{1}^{2}+(\sqrt{2})^{2}}$=$\sqrt{3}$,
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、純虛數(shù)的定義、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=|2x+1+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[0,1]B.[-1,1]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{πcosx,x<0}\\{f(x-π),x≥0}\end{array}\right.$,則函數(shù)g(x)=sin[2x-f($\frac{2π}{3}$)]的一個(gè)單調(diào)遞增區(qū)間為( 。
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{3π}{4}$]D.[$\frac{3π}{4}$,$\frac{5π}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題中真命題的個(gè)數(shù)是( 。
①若命題p為真,命題?q為真,則命題p且q為真;
②命題“若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$”的逆命題是真命題;
③命題“?x∈(0,+∞),x3+x-3>2”的否定是“?x∉(0,+∞),x3+x-3≤2.
A.0個(gè)B.1個(gè)C.2個(gè)D.3 個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若曲線y=kx2+lnx在點(diǎn)(1,k)處的切線與直線2x-y+3=0平行,則k=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),{an}的前n項(xiàng)和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,n∈N*
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)等比數(shù)列{bn}的各項(xiàng)均為正數(shù),${b_n}{b_{n+1}}≥{S_n}^2$,n∈N*,且存在整數(shù)k≥2,使得${b_k}{b_{k+1}}={S_k}^2$.
(i)求數(shù)列{bn}公比q的最小值(用k表示);
(ii)當(dāng)n≥2時(shí),${b_n}∈{N^*}$,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和Sn滿足2an+1-Sn=0,且a1=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=\sqrt{3}cos2x-sin2x$的圖象是由函數(shù)y=2sin2x的圖象按照向量$\overrightarrow a$平移得到的,則f(x)的周期為π,$\overrightarrow a$==(-$\frac{π}{3}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{3{a}_{n}+1}$,則an=$\frac{{2}^{n-2}}{3•{2}^{n-2}-1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案