6.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=x2-2x+c,則f(1)=-3.

分析 根據(jù)題意,由函數(shù)為奇函數(shù)可得f(0)=0,由函數(shù)的解析式可得f(0)=c=0,即c=0,即可得x≤0時(shí)函數(shù)的解析式,計(jì)算可得f(-1)的值,由奇函數(shù)的性質(zhì)可得f(1)=-f(-1),即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)是定義在R上的奇函數(shù),則有f(0)=0,
又由當(dāng)x≤0時(shí),f(x)=x2-2x+c,
則有f(0)=c=0,即c=0,
則f(x)=x2-2x,
f(-1)=3,
又由函數(shù)為奇函數(shù),則f(1)=-f(-1)=-3;
故答案為:-3.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性的性質(zhì),關(guān)鍵是充分利用函數(shù)的奇偶性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.四面體D-ABC中,AB=BC,在側(cè)面DAC中,中線AN⊥中線DM,且DB⊥AN.
(1)求證:MN∥面DAB;
(2)平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$θ∈(\frac{π}{2},π)$,則$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)z=1+$\frac{2-i}{2+4i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[-2,2)B.[-1,2)C.(-2,-1]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高二(1)班n名學(xué)生視力情況進(jìn)行調(diào)查,得到如圖的頻率分布直方圖,已知視力在4.0~4.4范圍內(nèi)的學(xué)生人數(shù)為24人,視力在5.0~5.2范圍內(nèi)為正常視力,視力在3.8~4.0范圍內(nèi)為嚴(yán)重近視.
(1)求a,n的值;
(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,迫害視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)班級(jí)名次在前10名和后10名的學(xué)生進(jìn)行了調(diào)查,得到如表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(3)若先按照分層抽樣在正常視力和嚴(yán)重近視的學(xué)生中抽取6人進(jìn)一步調(diào)查他們用眼習(xí)慣,再從這6人中隨機(jī)抽取2人進(jìn)行保護(hù)視力重要性的宣傳,求視力正常和嚴(yán)重近視各1人的概率.
是否近視/年級(jí)名次前10名后10名
近視97
不近視13
附:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知三棱錐O-ABC的三條側(cè)棱OA,OB,OC兩兩垂直,△ABC為等邊三角形,M為△ABC內(nèi)部一點(diǎn),點(diǎn)P在OM的延長(zhǎng)線上,且PA=PB.
(Ⅰ)證明:OA=OB;
(Ⅱ)證明:平面PAB⊥平面POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,已知a2與a4是方程x2-6x+8=0的兩個(gè)根,若a4>a2,則a2018=( 。
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)(2-x)10=a0+a1x+a2x2+…+a10x10,則a1+a2+…+a10=( 。
A.-1023B.-1024C.1025D.-1025

查看答案和解析>>

同步練習(xí)冊(cè)答案