【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

(1)證明:上單調(diào)遞增;

(2)函數(shù),如果總存在,對任意,都成立,求實(shí)數(shù)a的取值范圍.

【答案】(1)證明見解析;(2).

【解析】

(1)利用函數(shù)的單調(diào)性定義即可證出.

(2)根據(jù)解析式可知均為上的偶函數(shù),由題意可知只需函數(shù)上的最大值不小于的最大值,由(1)函數(shù)為單調(diào)遞增,即,解不等式即可.

(1)證明:任取,,且,

因?yàn)?/span>,,所以,

所以,即當(dāng)時,總有,

所以上單調(diào)遞增.

(2)解:由,得上的偶函數(shù),

同理,也是上的偶函數(shù).

總存在,對任意都有

即函數(shù)上的最大值不小于的最大值.

由(1)知上單調(diào)遞增, 所以當(dāng)時,,

所以.

,則,令,易知上遞增,

,所以,即

所以,即實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長到原來的倍(橫坐標(biāo)不變),再向左平移個單位長度,得到函數(shù)的圖象,設(shè)函數(shù).

1)對函數(shù)的解析式;

2)若對任意,不等式恒成立,求的最小值;

3)若內(nèi)有兩個不同的解,,求的值(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)解不等式:

2)是否存在實(shí)數(shù)t,使得不等式,對任意的及任意銳角都成立,若存在,求出t的取值范圍:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面是直角梯形,,,,,又平面,且,點(diǎn)在棱上且.

1)求證:;

2)求與平面所成角的正弦值;

3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題,

①命題“若,則”為真命題;

②命題“若,則”的否命題為真命題;

③若平面上不共線的三個點(diǎn)到平面距離相等,則

④若,是兩個不重合的平面,直線,命題,命題,則的必要不充分條件;

⑤平面過正方體的三個頂點(diǎn),且與底面的交線為,則;

其中,真命題的序號是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】出租車幾何學(xué)是由十九世紀(jì)的赫爾曼·閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣,直角坐標(biāo)系內(nèi)任意兩點(diǎn)定義它們之間的一種“距離”:,請解決以下問題:

(1)求線段上一點(diǎn)到點(diǎn)的“距離”;

(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓”上的所有點(diǎn)到點(diǎn)的“距離”均為的“圓”方程,并求該“圓”圍成的圖形的面積;

(3)若點(diǎn)到點(diǎn)的“距離”和點(diǎn)到點(diǎn)的“距離”相等,其中實(shí)數(shù)滿足,求所有滿足條件的點(diǎn)的軌跡的長之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),N為不同的兩點(diǎn),直線l,=,下列命題正確中正確命題的序號是_______

1)若,則直線l與線段MN相交;

2)若=-1,則直線l經(jīng)過線段MN的中點(diǎn);

3)存在,使點(diǎn)M在直線l上;

4)存在,使過M、N的直線與直線l重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的普及,大學(xué)生迷戀手機(jī)的現(xiàn)象非常嚴(yán)重.為了調(diào)查雙休日大學(xué)生使用手機(jī)的時間,某機(jī)構(gòu)采用不記名方式隨機(jī)調(diào)查了使用手機(jī)時間不超過小時的名大學(xué)生,將人使用手機(jī)的時間分成組:,,,分別加以統(tǒng)計,得到下表,根據(jù)數(shù)據(jù)完成下列問題:

使用時間/

大學(xué)生/

(1)完成頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計大學(xué)生使用手機(jī)的平均時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

同步練習(xí)冊答案