精英家教網 > 高中數學 > 題目詳情
4.如圖,正方體ABCD-A1B1C1D1的棱長為a
(1)求證A1C⊥平面BC1D
(2)求四面體A1BDC1的體積.

分析 (1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能證明A1C⊥平面BC1D.
(2)利用向量法求出點A1到平面BDC1的距離,由此能求出四面體A1BDC1的體積.

解答 證明:(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
A1(a,0,a),B(a,a,0),C(0,a,0),D(0,0,0),C1(0,a,a),
$\overrightarrow{{A}_{1}C}$=(-a,a,-a),$\overrightarrow{DB}$=(a,a,0),$\overrightarrow{D{C}_{1}}$=(0,a,a),
$\overrightarrow{{A}_{1}C}•\overrightarrow{DB}=-{a}^{2}+{a}^{2}+0=0$,
$\overrightarrow{{A}_{1}C}•\overrightarrow{D{C}_{1}}=0+{a}^{2}-{a}^{2}=0$,
∴A1C⊥DB,A1C⊥DC1
∵DB∩DC1=D,∴A1C⊥平面BC1D.
解:(2)設平面BDC1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=ax+ay=0}\\{\overrightarrow{n}•\overrightarrow{D{C}_{1}}=ay+az=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
$\overrightarrow{D{A}_{1}}$=(a,0,a).
點A1到平面BDC1的距離d=$\frac{|\overrightarrow{n}•\overrightarrow{D{A}_{1}}|}{|\overrightarrow{n}|}$=$\frac{2a}{\sqrt{3}}=\frac{2\sqrt{3}}{3}a$,
DB=DC1=BC1=$\sqrt{2}a$,
∴${S}_{△BD{C}_{1}}$=$\frac{1}{2}×\sqrt{2}a×\sqrt{2}a×sin60°$=$\frac{\sqrt{3}}{2}{a}^{2}$,
∴四面體A1BDC1的體積V=$\frac{1}{3}{S}_{△BD{C}_{1}}×d$=$\frac{1}{3}×\frac{\sqrt{3}}{2}{a}^{2}×\frac{2\sqrt{3}}{3}a$=$\frac{{a}^{3}}{3}$.

點評 本題考查線面垂直的證明,考查四面體的體積的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.已知函數f(x)=|x-1|+|x+1|,M為不等式f(x)≤4的解集.
(1)求集合M.
(2)當a,b∈M時,求證$2|{a-b}|≤\sqrt{16-7{a^2}{b^2}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.各項為正數的等比數列{an}中,a5與a15的等比中項為2$\sqrt{2}$,則log2a4+log2a16=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求A∪B;
(2)求(∁RA)∩B;
(3)若A∩C=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知tan60°=m,則cos120゜的值是(  )
A.$\frac{1}{{\sqrt{1+{m^2}}}}$B.$\frac{1-{m}^{2}}{1+{m}^{2}}$C.$\frac{m}{{\sqrt{1+{m^2}}}}$D.-$\frac{m}{{\sqrt{1+{m^2}}}}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=(x+a)2ex+b(a,b∈R)在x=1處取得極小值-1
(Ⅰ)求a,b的值
(Ⅱ)證明:x>0時,f(x)>lnx-$\frac{3}{2}$x2-2x.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=ax3+bx+c在x=2處取得極值為c-16.
(1)求a、b的值;
(2)若c=12,求f(x)在[-3,3]上的最大及最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.設數列{an}的前n項和為Sn,已知${a_1}=1,{a_{n+1}}=3{S_n}+1,n∈{N^*}$.
(1)求a2,a3的值;
(2)求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.“x<0”是“x2+x<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案