若以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為:ρ=2
2
sin(θ+
π
4
)
.求圓的直角坐標(biāo)方程.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:方程ρ=2
2
sin(θ+
π
4
)
兩邊展開(kāi)化為ρ2=2(ρsinθ+ρcosθ),把
x=ρcosθ
y=ρsinθ
代入可得直角坐標(biāo)方程.
解答: 解:方程ρ=2
2
sin(θ+
π
4
)
兩邊同乘以ρ,得ρ2=2
2
ρ(
2
2
sinθ+
2
2
cosθ)
,
即ρ2=2(ρsinθ+ρcosθ),
x=ρcosθ
y=ρsinθ
代入可得直角坐標(biāo)方程得x2+y2-2x-2y=0.
點(diǎn)評(píng):本題圓的極坐標(biāo)方程好奇直角坐標(biāo)方程、兩角和差的正弦公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,右焦點(diǎn)為F(1,0).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)點(diǎn)F且傾斜角為
π
4
 的直線與此橢圓相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(α-β)cosα-cos(α-β)sinα=m,β為第三象限角,cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿(mǎn)足下列關(guān)系式:①f(
π
2
)=1,②對(duì)于任意的x,y∈R,恒有:2f(x)f(y)=f(
π
2
-x+y)-f(
π
2
-x-y).
(1)求證:f(0)=0;
(2)求證:f(x)為奇函數(shù);
(3)f(x)是以2π為周期的周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:mx-y=0,l2:x+my-m-2=0,m∈R.
(1)求證:對(duì)m的任意實(shí)數(shù)值,l1和l2的交點(diǎn)M總在一個(gè)定圓上;
(2)若l1與(1)中的定圓的另一個(gè)交點(diǎn)為P1,l2與(1)中的定圓的另一個(gè)交點(diǎn)為P2,求△PP1P2面積取得最大值,并求出此時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在可行域內(nèi)任取一點(diǎn),如框圖所示進(jìn)行操作,則能輸出數(shù)對(duì)(x,y)的概率是( 。
A、
1
4
B、
π
4
C、
π
8
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2,g(x)=x-1,若存在x∈R,使f(x)<b•g(x),則b的范圍是( 。
A、(-∞,0)∪(4,+∞)
B、(4,+∞)
C、(-∞,0)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正六棱臺(tái)的底面邊長(zhǎng)分別為1厘米和2厘米,高是1厘米,則它的側(cè)面積是
 
厘米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程|x+1|=2x根的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案