2.△ABC內(nèi)角A、B、C的對邊分別為a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.

分析 (1)利用正弦定理、和差公式可得cosBsinC=sinCsinB,又sinC≠0,化為tanB=1,即可得出.
(2)利用余弦定理與基本不等式的性質(zhì)即可得出.

解答 解:(1)由a-bsin($\frac{π}{2}$-C)=c•sinB,利用正弦定理可得:sinA-sinBcosC=sinCsinB,∴sin(B+C)-sinBcosC=sinCsinB,∴cosBsinC=sinCsinB,
∵sinC≠0,∴tanB=1,B∈(0,π),∴B=$\frac{π}{4}$.
(2)由余弦定理可得:22=a2+c2-2accos$\frac{π}{4}$≥2ac-$\sqrt{2}$ac,當(dāng)且僅當(dāng)a=c時取等號.
化為:ac≤4+2$\sqrt{2}$.
∴S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}×(4+2\sqrt{2})$×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$+1.

點評 本題考查了正弦定理余弦定理、和差公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正實數(shù)a,b滿足$\frac{a+b}{ab}$=1,則a+2b的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知n為正整數(shù),在(1+x)2n與(1+2x3n展開式中x3項的系數(shù)相同,求:
(1)n的值.
(2)(1+2x3n展開式中二項式系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z滿足z•(i-i2)=1+i3,其中i為虛數(shù)單位,則z=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=$\frac{1}{2}$x2-lnx在其定義域的一個子區(qū)間(k-1,k+1)上不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( 。
A.(1,2)B.[1,2)C.[0,2)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.曲線f(x)=x+lnx在x=1處的切線方程是(  )
A.y=x-1B.y=x-2C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知極坐標(biāo)的極點在平面直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,且長度單位相同.直線l的極坐標(biāo)方程為:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若點P為曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,(α為參數(shù))上的動點,其中參數(shù)α∈[0,2π].
(1)試寫出直線l的直角坐標(biāo)方程及曲線C的普通方程;
(2)求點P到直線l距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,E,F(xiàn)分別是PA,PD邊上的中點,且PD=AB=2.
(1)求EF∥平面PBC;
(2)求四棱錐P-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別為F1、F2,離心率e=$\frac{\sqrt{2}}{2}$,與雙曲線${x^2}-{y^2}=\frac{1}{2}$有相同的焦點.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)過點F1的直線l與該橢圓C交于M、N兩點,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}}$N|=$\frac{2\sqrt{26}}{3}$,求直線l的方程.
(Ⅲ)是否存在圓心在原點的圓,使得該圓的任一條切線與橢圓C有兩個交點A、B,且OA⊥OB?若存在,寫出該圓的方程,否則,說明理由.

查看答案和解析>>

同步練習(xí)冊答案