14.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長度單位相同.直線l的極坐標(biāo)方程為:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若點(diǎn)P為曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,(α為參數(shù))上的動點(diǎn),其中參數(shù)α∈[0,2π].
(1)試寫出直線l的直角坐標(biāo)方程及曲線C的普通方程;
(2)求點(diǎn)P到直線l距離的最大值.

分析 (1)由ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,展開ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,利用互化公式即可得出直線l的直角坐標(biāo)方程.曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且參數(shù)α∈[0,2π],利用三角函數(shù)基本關(guān)系式的平方關(guān)系消去參數(shù)α可知曲線C的普通方程.
(2)由(1)點(diǎn)P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.利用點(diǎn)到直線的距離公式可得圓心C到直線l的距離d,可得點(diǎn)P到直線l距離的最大值為d+r.

解答 解:(1)∵ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,∴ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,
∴直線l的直角坐標(biāo)方程為:y-$\sqrt{3}$x=2$\sqrt{3}$.
曲線C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且參數(shù)α∈[0,2π],
消去參數(shù)α可知曲線C的普通方程為:(x-2)2+y2=4.
(2)由(1)點(diǎn)P的軌跡方程為(x-2)2+y2=4,圓心為C(2,0),半徑為2.
圓心C到直線l的距離d=$\frac{|2\sqrt{3}-0+2\sqrt{3}|}{\sqrt{(\sqrt{3})^{2}+1}}$=2$\sqrt{3}$,
∴點(diǎn)P到直線l距離的最大值為$2\sqrt{3}$+2.

點(diǎn)評 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)滿足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,則f(1)•f(2)•f(3)…f(23)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在邊長為1的正三角形ABC中,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,則$\overrightarrow{AD}$•$\overrightarrow{AB}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC內(nèi)角A、B、C的對邊分別為a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,記函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等差數(shù)列{an}中,a1+a2=5,a3+a4=17.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和為Sn,求Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{2}$ax3-$\frac{3}{2}$x2+$\frac{3}{2}$a2x(a∈R)在x=1處取得極大值,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校甲、乙兩個班各派10名同學(xué)參加英語口語比賽,并記錄他們的成績,得到如圖所示的莖葉圖.現(xiàn)擬定在各班中分?jǐn)?shù)超過本班平均分的同學(xué)為“口語王”.
(Ⅰ)記甲班“口語王”人數(shù)為m,乙班“口語王”人數(shù)為n,比較m,n的大;
(Ⅱ)求甲班10名同學(xué)口語成績的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=|x-a|-a(a∈R).若?x∈R,f(x+2016)>f(x),則實(shí)數(shù)a的取值范圍是a<504.

查看答案和解析>>

同步練習(xí)冊答案