10.我們易知$\sqrt{2}-1>2-\sqrt{3},\sqrt{3}-\sqrt{2}>\sqrt{5}-2,2-\sqrt{3}>\sqrt{6}-\sqrt{5},…$,從前面n個(gè)不等式類(lèi)比得更一般的結(jié)論為( 。
A.$\sqrt{n+1}-n>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$B.$\sqrt{n+1}-n>\sqrt{n+3}-n({n∈{N^*}})$
C.$\sqrt{n+1}-\sqrt{n}>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$D.$\sqrt{n+1}-\sqrt{n}>n-\sqrt{n+2}({n∈{N^*}})$

分析 將已知的等式化為$\sqrt{2}-\sqrt{1}>\sqrt{4}-\sqrt{3}$,$\sqrt{3}-\sqrt{2}>\sqrt{5}-\sqrt{4}$,$\sqrt{4}-\sqrt{3}>\sqrt{6}-\sqrt{5}$,…,得到一般結(jié)論.

解答 解:由已知$\sqrt{2}-1>2-\sqrt{3},\sqrt{3}-\sqrt{2}>\sqrt{5}-2,2-\sqrt{3}>\sqrt{6}-\sqrt{5},…$,
即$\sqrt{2}-\sqrt{1}>\sqrt{4}-\sqrt{3}$,$\sqrt{3}-\sqrt{2}>\sqrt{5}-\sqrt{4}$,$\sqrt{4}-\sqrt{3}>\sqrt{6}-\sqrt{5}$,…,得到一般結(jié)論為$\sqrt{n+1}-\sqrt{n}>\sqrt{n+3}-\sqrt{n+2}$;
故選:C.

點(diǎn)評(píng) 本題考查了合情推理的歸納推理;關(guān)鍵是由已知的三個(gè)式子,發(fā)現(xiàn)規(guī)律并總結(jié)歸納,得到一般結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.從1=12、1+3=22、1+3+5=32、1+3+5+7=42、…,猜想得到1+3+…+(2n-1)=( 。
A.nB.2n-1C.n2D.(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.“a>b>0”是“a+a2>b+b2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如果a>b,那么下列不等式中一定成立的是(  )
A.a+c>b+cB.$\sqrt{a}>\sqrt$C.c-a>c-bD.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在三角形ABC中,已知c=10,A=45°,C=30°,求邊b和三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若${(1-x)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,則|a0|-|a1|+|a2|-|a3|+|a4|-|a5|=(  )
A.0B.1C.32D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在平面直角坐標(biāo)系xOy中,已知點(diǎn)F(-1,1)及直線l:x-y+1=0,動(dòng)點(diǎn)P(x,y)滿足下列兩個(gè)條件:①$|{PF}|=\sqrt{2}d$,其中d是P到l的距離;②$\left\{\begin{array}{l}x<0\\ y>0\\ x-y>-\frac{33}{8}\end{array}\right.$,則動(dòng)點(diǎn)P(x,y)的軌跡方程為xy=-$\frac{1}{2}$,(-4$<x<-\frac{1}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合M={x∈R,|px2-2x+3=0,x∈R}.
(1)若M中只有一個(gè)元素,求實(shí)數(shù)p的值,并求出相應(yīng)的集合M;
(2)若M中最多有一個(gè)元素,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知全集U=R,集合P={x|x2≤1},則∁UP=(  )
A.(1,+∞)B.(-1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案