【題目】已知f(x)= ,則使得f(x)﹣ex﹣m≤0恒成立的m的取值范圍是( )
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)
【答案】D
【解析】解:當(dāng)x≤1時,f(x)﹣ex﹣m≤0即為m≥x+3﹣ex ,
可令g(x)=x+3﹣ex , 則g′(x)=1﹣ex , 當(dāng)0<x<1時,g′(x)<0,g(x)遞減;
當(dāng)x<0時,g′(x)>0,g(x)遞增.g(x)在x=0處取得極大值,也為最大值,且為2,
則有m≥2 ①
當(dāng)x>1時,f(x)﹣ex﹣m≤0即為m≥﹣x2+2x+3﹣ex ,
可令h(x)=﹣x2+2x+3﹣ex , h′(x)=﹣2x+2﹣ex , 由x>1,則h′(x)<0,
即有h(x)在(1,+∞)遞減,則有h(x)<h(1)=4﹣e,
則有m≥4﹣e ②
由①②可得,m≥2成立.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .任取t∈R,若函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),記g(t)=M(t)﹣m(t).
(1)求函數(shù)f(x)的最小正周期及對稱軸方程;
(2)當(dāng)t∈[﹣2,0]時,求函數(shù)g(t)的解析式;
(3)設(shè)函數(shù)h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中實數(shù)k為參數(shù),且滿足關(guān)于t的不等式 有解,若對任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓()的左、右焦點分別為,點在橢圓上, , , 的面積為.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓
有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點?若存在,求圓的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有0,1,2,3,4,5六個數(shù)字.
(1)用所給數(shù)字能夠組成多少個四位數(shù)?
(2)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字的五位數(shù)?
(3)用所給數(shù)字可以組成多少個沒有重復(fù)數(shù)字且比3142大的數(shù)?(最后結(jié)果均用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(x≥0)的圖象經(jīng)過點(2, ),其中a>0且a≠1.
(1)求a的值;
(2)求函數(shù)y=f(x)(x≥0)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高一年級期中考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)用分層抽樣的方法在分?jǐn)?shù)段為[60,80)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[70,80)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com