已知正方形ABCD,E、F分別是CD、AD的中點(diǎn),BE、CF交于點(diǎn)P.求證BE⊥CF.
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:充分利用正方形發(fā)性質(zhì)可以判斷△BCE≌△CDF,利用三角形全等的性質(zhì)可得∠BEC=∠CFD,利用三角形的內(nèi)角和定理可證.
解答: 證明:因?yàn)橐阎狝BCD是正正方形,
所以BC=CD,∠BCE=∠CDF=90°
E、F分別是CD、AD的中點(diǎn),
所以CE=DF,
所以△BCE≌△CDF,
所以∠BEC=∠CFD,
又∠CFD+∠DCF=90°,
所以∠BEC+∠DCF=90°,
在△PCE中,∠CPE=180°-∠BEC-∠DCF=90°,
所以BE⊥CF.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)以及三角形全等的判定定理和性質(zhì)定理的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[0,1]時(shí),求函數(shù)f(x)=x2+(2-6a)x+3a2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A,B的極坐標(biāo)分別為(3,
π
4
)和(-3,
π
12
),則A和B之間的距離等于( 。
A、
18
+
6
2
B、
18
-
6
2
C、
3
6
+3
2
2
D、
3
6
-3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(cosωx,sinωx)(ω>0),
n
=(-3,
3
),若函數(shù)f(x)=
m
n
的最小正周期是2,則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:實(shí)數(shù)x滿足x2-4ax+3a2>0其中a<0,命題q:實(shí)數(shù)x滿足x2-x-6≤0,且p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長都等于1,點(diǎn)E、F分別是AB、AD的中點(diǎn),則
BF
CE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC是正三角形,給出下列等式:
①|(zhì)
AB
+
BC
|=|
BC
+
CA
|
②|
AC
+
CB
|=|
BA
+
BC
|
③|
AB
+
AC
|=|
CA
+
CB
|
④|
AB
+
BC
+
AC
|=|
CB
+
BA
+
CA
|
其中正確的等式有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的最高點(diǎn)為P(
π
12
,3),由這個(gè)最高點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于Q(
π
3
,0),則函數(shù)表達(dá)式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足:
(。⿲(duì)任意x∈R都有f(x+6)=f(x)+f(3)成立;
(ⅱ)f(-5)=-1;
(ⅲ)當(dāng)x1,x2∈[0,3]且x1≠x2時(shí),都有
f(x1)-f(x2)
x1-x2
>0.
則給出下列命題:
①f(2009)=-1;
②直線x=-6是函數(shù)y=f(x)圖象的一條對(duì)稱軸;
③y=f(x)在[-9,-6]上為減函數(shù);
④方程f(x)=0在[-9,9]上有4個(gè)根.
其中正確的命題為
 
.(填寫正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案