分析 (Ⅰ)問(wèn)題轉(zhuǎn)化為解不等式$\frac{1}{2}$x2-2x+1≥1,解出即可;(Ⅱ)得到-$\frac{2q-8}{p-2}$≥2,即p+q≤6,由p>0,q>0,結(jié)合基本不等式的性質(zhì)求出pq的最大值即可.
解答 解:(Ⅰ)由題意知f(x)=$\frac{1}{2}$x2-2x+1,
由f(x)≥1得:$\frac{1}{2}$x2-2x+1≥1,解之得x≤0或x≥4,
所以使f(x)≥1的x的取值范圍是{x|x≤0或x≥4};…(5分)
(Ⅱ)當(dāng)p>2時(shí),f(x)圖象的開(kāi)口向上,
要使f(x)在區(qū)間[$\frac{1}{2}$,2]上單調(diào)遞減,須有-$\frac{2q-8}{p-2}$≥2,…(7分)
得p+q≤6,由p>0,q>0知p+q≥2$\sqrt{pq}$,所以2$\sqrt{pq}$≤6,得 pq≤9,
當(dāng)p=q=3時(shí),pq=9,
所以,pq的最大值為9.…(12分)
點(diǎn)評(píng) 本題考查了解不等式問(wèn)題,考查函數(shù)的單調(diào)性以及基本不等式的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{5}{4}$ | D. | 2或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4e}{e+1}$ | B. | $\frac{4}{e+1}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0) | B. | (1,+∞) | C. | (-1,0)U(1,+∞) | D. | (-∞,-1)U(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=cos2x | B. | y=tan4x | C. | y=sin4x | D. | y=cos4x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com