分析 (1)利用等差數(shù)列的通項公式及其前n項和公式即可得出;
(2)利用“裂項求和”方法即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a5+a6=24,S3=15.
∴2a1+9d=24,3a1+3d=15,
解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(2)bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$
=$\frac{n}{4(n+1)}$.
點評 本題考查了等差數(shù)列的通項公式及其前n項和公式、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | 0或$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,6] | B. | [4-$\sqrt{2}$,4+$\sqrt{2}$] | C. | [-6,-2] | D. | [-4-$\sqrt{2}$,-4+$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M⊆N | C. | N⊆M | D. | N>M |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com