9.已知向量$\overrightarrow{a}$=(0,4),$\overrightarrow$=(2,2),則下列結(jié)論中正確的是( 。
A.$\overrightarrow{a}=\overrightarrow$B.$\overrightarrow{a}⊥\overrightarrow$C.($\overrightarrow{a}-\overrightarrow$)$∥\overrightarrow{a}$D.$\overrightarrow{a}•\overrightarrow$=8

分析 利用向量的坐標(biāo)計算數(shù)量積進(jìn)行判斷.

解答 解:$\overrightarrow{a}•\overrightarrow$=0×2+4×2=8.
故選D.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)隨機變量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=$\frac{5}{9}$,求E(2η+1),D(2η+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了增強消防安全意識,某中學(xué)對全體學(xué)生做了一次消防知識講座,從男生中隨機抽取50人,從女生中隨機抽取70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:
 優(yōu)秀非優(yōu)秀總計
男生153550
女生304070
總計4575120
(Ⅰ)試判斷是否有90%的把握認(rèn)為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
K2=$\frac{a(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
k01.3232.0722.7063.8415.0246.635
(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學(xué)中采用分層抽樣的方法,隨機選出6名組成宣傳小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學(xué)中至少有1名是男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1-x}{{e}^{x}}$.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的零點和極值;
(3)若對任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{{e}^{2}}$成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在書柜的某一層上原來共有5本不同的書,如果保持原有書的相對順序不變,再插進(jìn)去3本不同的書,那么共有336種不同的插入法.(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知m≥1,當(dāng)x∈R時,不等式m+cos2x<3+2sinx+$\sqrt{2m+1}$恒成立,則m的取值范圍是[1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知四邊形ABCD,O為任意一點,若$\overrightarrow{OA}$$+\overrightarrow{OC}$=$\overrightarrow{OB}$+$\overrightarrow{OD}$,那么四邊形ABCD的形狀是( 。
A.正方形B.平行四邊形C.矩形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知cosα=$\frac{1}{3}$,α∈(0,$\frac{π}{4}$),則$\frac{cos2α}{cos(\frac{π}{4}+α)}$=$\frac{4+\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F1作圓x2+y2=a2的切線,并延長交雙曲線右支于點P,過右焦點F2作圓的切線交F1P于M,且M為F1P的中點,則雙曲線的離心率e∈( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3},2$)D.(2,$\sqrt{5}$)

查看答案和解析>>

同步練習(xí)冊答案