17.已知點(diǎn)P在拋物線y2=4x上,且點(diǎn)P到y(tǒng)軸的距離與其焦點(diǎn)的距離之比為$\frac{1}{2}$,則點(diǎn)P到x軸的距離為2.

分析 設(shè)P的坐標(biāo)為(xP,yP),求出拋物線的準(zhǔn)線方程,結(jié)合拋物線的定義建立方程關(guān)系進(jìn)行求解即可.

解答 解:設(shè)點(diǎn)P的坐標(biāo)為(xP,yP),拋物線y2=4x的準(zhǔn)線方程為x=-1,
根據(jù)拋物線的定義,點(diǎn)P到焦點(diǎn)的距離等于點(diǎn)P到準(zhǔn)線的距離,
故$\frac{x_P}{{{x_P}-(-1)}}=\frac{1}{2}$,解得xP=1,
∴$y_P^2=4$,∴|yP|=2.
故答案為:2

點(diǎn)評 本題主要考查拋物線性質(zhì)和定義的應(yīng)用,利用拋物線的定義建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知復(fù)數(shù)z=$\frac{1}{{1+a{i^3}}}$(a∈R且a≠0,i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A.$\frac{1}{1+ai}$B.$\frac{1+ai}{{1+{a^2}}}$C.$\frac{1}{1-ai}$D.$\frac{-1+ai}{{1+{a^2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,D為BC的中點(diǎn),滿足∠A=$\frac{2π}{3}$,∠BAD+∠C=90°,則∠B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列各點(diǎn)中,位于不等式(x+2y+1)(x-y+4)<0表示的平面區(qū)域內(nèi)的是(  )
A.(0,0)B.(-2,0)C.(-1,0)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)h(x)=$\frac{1}{3}{x^3}$-ax2+1,設(shè)f(x)=h'(x)-2alnx,g(x)=ln2x+2a2,其中x>0,a∈R.
(1)若f(x)在區(qū)間(2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)記F(x)=f(x)+g(x),求證:F(x)≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(2-$\frac{x}{a}$)(1-2x)4的展開式中x3項(xiàng)的系數(shù)是-70,則a的值為( 。
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為$\frac{1}{2}$,過y軸正半軸上一點(diǎn)C(0,c)作直線,與拋物線交于A,B兩點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若P為線段AB的中點(diǎn),過點(diǎn)P作PQ⊥x軸,交直線l:y=-c于點(diǎn)Q,求證:QA,QB為拋物線的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx的周期為$\frac{π}{2}$,其中ω>0
(1)求ω的值,并寫出函數(shù)f(x)的解析式
(2)設(shè)△ABC的三邊a、b、c依次成等比數(shù)列,且函數(shù)f(x)的定義域等于b邊所對的角B的取值集合,求此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cost}\\{y=5+5sint}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系得曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)將曲線C1向右移動(dòng)1個(gè)單位得到曲線C3,求C3與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

同步練習(xí)冊答案