7.已知復數(shù)z=$\frac{1}{{1+a{i^3}}}$(a∈R且a≠0,i為虛數(shù)單位),則z的共軛復數(shù)為( 。
A.$\frac{1}{1+ai}$B.$\frac{1+ai}{{1+{a^2}}}$C.$\frac{1}{1-ai}$D.$\frac{-1+ai}{{1+{a^2}}}$

分析 利用復數(shù)除法化簡復數(shù)為a+bi的形式,然后利用共軛復數(shù)的分子實數(shù)化,求解 即可.

解答 解:復數(shù)z=$\frac{1}{{1+a{i^3}}}$=$\frac{1}{1-ai}$=$\frac{1+ai}{(1-ai)(1+ai)}$=$\frac{1+ai}{1+{a}^{2}}$.
則z的共軛復數(shù)為:$\frac{1-ai}{1+{a}^{2}}$=$\frac{(1-ai)(1+ai)}{(1+{a}^{2})(1+ai)}$=$\frac{1}{1+ai}$.
故選:A.

點評 本題考查復數(shù)的代數(shù)形式混合運算,共軛復數(shù)的應用,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知復數(shù)z=3+i(i為虛數(shù)單位),則$\frac{z}{1+i}$的模為( 。
A.2$\sqrt{2}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知F1,F(xiàn)2分別是雙曲線x2-$\frac{y^2}{a^2}$=1(a>0)的兩個焦點,O為坐標原點,圓O是以F1,F(xiàn)2為直徑的圓,直線l:y=$\sqrt{7}$x-4與圓O相交,則實數(shù)a的取值范圍是( 。
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
( I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)將函數(shù)f(x)的圖象各點縱坐標不變,橫坐標伸長為原來的2倍,然后向左平移$\frac{π}{3}$個單位,得函數(shù)F(x)的圖象.若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a+c=4,且F(B)=0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合 P={0,1,2},若P∩(∁zQ)=∅,則集合Q可以為( 。
A.{x|x=2a,a∈P}B.{x|x=2a,a∈P}C.{x|x=a-1,a∈N}D.{x|x=a2,a∈N}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.某村有2500人,其中青少年1000人,中年人900人,老年人600人,為了調(diào)查本村居民的血壓情況,采用分層抽樣的方法抽取一個樣本,若從中年人中抽取36人,從青年人和老年人中抽取的個體數(shù)分別為a,b,則直線ax+by+8=0上的點到原點的最短距離為$\frac{{\sqrt{34}}}{34}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$,z=|x+y|,若z的最大值為3,則k的值是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=a(x+1)2ln(x+1)+bx(x>-1),曲線y=f(x)過點(e-1,e2-e+1),且在點(0,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當x≥0時,f(x)≥x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知點P在拋物線y2=4x上,且點P到y(tǒng)軸的距離與其焦點的距離之比為$\frac{1}{2}$,則點P到x軸的距離為2.

查看答案和解析>>

同步練習冊答案