17.某羽絨服賣(mài)場(chǎng)為了解氣溫對(duì)營(yíng)業(yè)額的影響,營(yíng)業(yè)員小孫隨機(jī)記錄了該店3月份上旬中某5天的日營(yíng)業(yè)額y(單元:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x258911
y1210887
(1)求y關(guān)于x的回歸直線方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)若天氣預(yù)報(bào)明天的最低氣溫為10℃,用所求回歸方程預(yù)測(cè)該店明天的營(yíng)業(yè)額;
(3)設(shè)該地3月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差,求P(0.6<X<3.8).
附:(1)回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287,
(2)$\sqrt{10}≈3.2$;若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545.

分析 (1)根據(jù)題意,計(jì)算平均數(shù)$\overline{x}$、$\overline{y}$和回歸系數(shù)$\stackrel{∧}$、$\stackrel{∧}{a}$,寫(xiě)出回歸直線方程;
(2)計(jì)算x=10時(shí)$\stackrel{∧}{y}$的值即可預(yù)測(cè)結(jié)果;
(3)由X~N(7,10),計(jì)算P(3.8<x<7)值,得出P(0.6<x<3.8)的值.

解答 解:(1)根據(jù)題意,計(jì)算$\overline{x}$=$\frac{1}{5}$×(2+5+8+9+11)=7,
$\overline{y}$=$\frac{1}{5}$×(12+10+8+8+7)=9,
$\stackrel{∧}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$=$\frac{287-5×7×9}{295-5×7×7}$=-0.56,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=9-(-0.56)×7=12.92,
∴y關(guān)于x的回歸直線方程$\stackrel{∧}{y}$=-0.56x+12.92;
(2)x=10時(shí),$\stackrel{∧}{y}$=-0.56×10+12.92=7.32,
預(yù)測(cè)該店明天的營(yíng)業(yè)額為7320元;
(3)由題意,平均數(shù)為μ=7,方差為σ2=10,
所以X~N(7,10),
所以P(3.8<x<7)=$\frac{1}{2}$P(3.8<x<10.2)=0.34135,
P(0.6<x<3.8)=$\frac{1}{2}$P(0.6<x<13.4)-$\frac{1}{2}$P(3.8<x<10.2)=0.1359.

點(diǎn)評(píng) 本題考查了回歸直線方程和正態(tài)分布的應(yīng)用問(wèn)題,是綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-$\frac{{x}^{2}-a}{x}$,a為常數(shù).
(1)求證:x≥lnx+1;
(2)當(dāng)a=0時(shí),求y=f(x)•f($\frac{1}{x}$)的最小值;
(3)若不等式f(x)<(a-1)x對(duì)?x∈(1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(cosφ,sinφ)
(1)若|θ-φ|=$\frac{π}{3}$,求|$\overrightarrow{a}$-$\overrightarrow$|的值;
(2)若θ+φ=$\frac{π}{3}$,記f(θ)=$\overrightarrow{a}$•$\overrightarrow$-λ|$\overrightarrow{a}$+$\overrightarrow$|,θ∈[0,$\frac{π}{2}$].當(dāng)1≤λ≤2時(shí),求f(θ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2,|{\overrightarrow a}|=1$,則$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若△ABC的三邊分別為a,b,c,且圓x2+y2=1與直線ax+by+c=0沒(méi)有公共點(diǎn),則△ABC一定是( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在平面四邊形ABCD中,已知∠A=$\frac{π}{2}$,∠B=$\frac{2π}{3}$,AB=6,在AB邊上取點(diǎn)E,使得BE=1,連接EC,ED.若∠CED=$\frac{2π}{3}$,EC=$\sqrt{7}$.
(Ⅰ)求sin∠BCE的值;
(Ⅱ)求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)f(x)=2sinπx與函數(shù)$y=\frac{1}{1-x}$的圖象在區(qū)間[-2,4]上交點(diǎn)的橫坐標(biāo)依次分別為x1,x2,…,xn,則$\sum_{i=1}^{n}$xi=( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某商場(chǎng)計(jì)劃銷(xiāo)售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷(xiāo)10天.兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣(mài)出一件產(chǎn)品廠家再返利2元;乙廠家無(wú)固定返利,賣(mài)出40件以?xún)?nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家的試銷(xiāo)情況莖葉圖如下:
8998993899
201042111010
(Ⅰ)現(xiàn)從甲廠家試銷(xiāo)的10天中抽取兩天,求這兩天的銷(xiāo)售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問(wèn)題:
(。┯浺覐S家的日返利額為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ⅱ)商場(chǎng)擬在甲、乙兩個(gè)廠家中選擇一家長(zhǎng)期銷(xiāo)售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,圓O與離心率為$\frac{{\sqrt{3}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于點(diǎn)M(0,1).
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合).
(。┤鬚為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為d1、d2,求$d_1^2+d_2^2$的最大值;
(ⅱ)若$3\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1與l2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案