13.已知tanα>0,則點P(sinα,cosα)位于(  )
A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限

分析 由tanα>0,可得sinα、cosα同號,即可得出結(jié)論.

解答 解:∵tanα>0,
∴sinα、cosα同號,
∴點P(sinα,cosα)位于第一、三象限.
故選:B.

點評 本題考查了三角函數(shù)值的符號.記憶技巧:一全正、二正弦、三正切、四余弦(為正).即第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若事件A與B互斥,已知P(A)=P(B)=$\frac{1}{4}$,則P(A∪B)的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{16}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.f(x)定義在R上的偶函數(shù),且x≥0時,f(x)=x3,若對任意x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,則實數(shù)t的取值范圍是(-∞,-3]∪{0}∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對于給定的正數(shù)k,定義函數(shù):${f_k}(x)=\left\{\begin{array}{l}f(x)(f(x)≤k)\\ k\;\;\;\;\;\;(f(x)>k)\end{array}\right.$,取函數(shù)f(x)=2-x-e-x,若對任意的x∈(-∞,+∞),恒有fk(x)=f(x),則( 。
A.k的最大值為2B.k的最小值為2C.k的最大值為1D.k的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知三個不等式:①ab<0;②$-\frac{c}{a}<-\fraclesovci$;③bc<ad,以其中兩個為條件,余下的一個作為結(jié)論,則可以組成3個正確的命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知不等式組$\left\{\begin{array}{l}{2x+y-3≤0}\\{x-y+2≥0}\\{2x-3y-3≤0}\end{array}\right.$表示的平面區(qū)域為D,P(x,y)為D上一點,則|x+4|+|y+3|的最大值為( 。
A.$\frac{17}{2}$B.9C.$\frac{29}{3}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合U={1,2,3,4,5}為全集,A={1,2,3},B={2,5},則(∁UB)∩A=(  )
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}}\right.$若0≤ax+by≤2恒成立,則a2+b2的最大值是(  )
A.1B.$\frac{8}{9}$C.$\frac{20}{9}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在Rt△ABC中,∠A=90°,AB=AC=1,點E是AB的中點,點D滿足$\overrightarrow{CD}=\frac{2}{3}\overrightarrow{CB}$,則$\overrightarrow{CE}•\overrightarrow{AD}$=$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊答案