【題目】已知橢圓的離心率為,以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.
⑴求橢圓C的標準方程;
⑵已知點A、B為動直線與橢圓C的兩個交點,問:在x軸上是否存在定點E,使得為定值?若存在,試求出點E的坐標和定值;若不存在,請說明理由.
【答案】(1)(2)定值為
【解析】試題分析:(Ⅰ)由e=,以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切,求出a,b,由此能求出橢圓的方程.
(Ⅱ)由,得(1+3k2)x2﹣12k2x+12k2﹣6=0,由此利用韋達定理、向量的數(shù)量積,結(jié)合已知條件能求出在x軸上存在點E,使為定值,定點為().
試題解析:
(Ⅰ)由e=,得=,即c=a,①
以原點O為圓心,橢圓C的長半軸長為半徑的圓為x2+y2=a2,
此圓與直線2x﹣+6=0相切,∴a==,
代入①得c=2,(4分)
∴b2=a2﹣c2=2,∴橢圓的方程為.
(Ⅱ)由,得(1+3k2)x2﹣12k2x+12k2﹣6=0,(6分)
設(shè)A(x1,y1),B(x2,y2),∴,,
根據(jù)題意,假設(shè)x軸上存在定點E(m,0),使得為定值,
則有=(x1﹣m,y1)(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2
=
=(k2+1)
=(k2+1)﹣(2k2+m)+(4k2+m2)
=,
要使上式為定值,即與k無關(guān),則應(yīng)有3m2﹣12m+10=3(m2﹣6),
即m=,此時=為定值,定點為().
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙二人參加普法知識競答,共有10個不同的題目,其中選擇題6個,判斷題4個.甲、乙二人依次各抽一題.
(1)甲抽到選擇題、乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點P的坐標;
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.
(Ⅰ)求角A的值;
(Ⅱ)求sin B-cos C的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:(x﹣1)2+(y﹣1)2=4,直線l過點P(2,3)且與圓M交于A,B兩點,且|AB|=2 .
(1)求直線l方程;
(2)設(shè)Q(x0 , y0)為圓M上的點,求x02+y02的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】底面是正方形的四棱錐中中,側(cè)面底面,且是等腰直角三角形,其中,分別為線段的中點,問在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).
(1)要使f(x)≥0恒成立,求t的最小值;
(2)令f(x)=0,求使t>20成立的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com