如圖,三棱柱ABC-A1B1C1中,M,N分別為AB,B1C1的中點(diǎn).
(1)求證:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求證:AB?平面CMN.
(1)詳見解析,(2)詳見解析.
【解析】
試題分析:(1)證明線面平行,需先證明線線平行.證明線線平行,需先利用平行四邊形. 取A1C1的中點(diǎn)P,則可得四邊形AMNP為平行四邊形,所以MN∥AP.因為AP?平面AA1C1C,MN?平面AA1C1C,所以MN∥平面AA1C1C.(2)條件中面面垂直,需先化為線面垂直. 因為平面CC1B1B⊥平面ABC,平面CC1B1B∩平面ABC=BC.CN?平面CC1B1B,CN?BC,所以CN⊥平面ABC.因為AB?平面ABC,所以CN⊥AB.因為CM?平面CMN,CN?平面CMN,CM∩CN=C,所以AB⊥平面CMN.
試題解析:證明:(1)取A1C1的中點(diǎn)P,連接AP,NP.
因為C1N=NB1,C1P=PA1,所以NP∥A1B1,NP=A1B1. 2分
在三棱柱ABC-A1B1C1中,A1B1∥AB,A1B1=AB.
故NP∥AB,且NP=AB.
因為M為AB的中點(diǎn),所以AM=AB.
所以NP=AM,且NP∥AM.
所以四邊形AMNP為平行四邊形.
所以MN∥AP. 4分
因為AP?平面AA1C1C,MN?平面AA1C1C,
所以MN∥平面AA1C1C. 6分
(2)因為CA=CB,M為AB的中點(diǎn),所以CM⊥AB. 8分
因為CC1=CB1,N為B1C1的中點(diǎn),所以CN⊥B1C1.
在三棱柱ABC-A1B1C1中,BC∥B1C1,所以CN?BC.
因為平面CC1B1B⊥平面ABC,平面CC1B1B∩平面ABC=BC.CN?平面CC1B1B,
所以CN⊥平面ABC. 10分
因為AB?平面ABC,所以CN⊥AB. 12分
因為CM?平面CMN,CN?平面CMN,CM∩CN=C,
所以AB⊥平面CMN. 14分
考點(diǎn):線面平行判定定理,面面垂直性質(zhì)定理,線面垂直判定定理
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高二第二學(xué)期階段測試文科數(shù)學(xué)試卷(解析版) 題型:填空題
不等式a2+8b2≥λb(a+b)對于任意的a,b∈R恒成立,則實數(shù)λ的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高三8月開學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù),曲線在點(diǎn)(1,處的切線為. (Ⅰ)求;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省高三8月開學(xué)考試數(shù)學(xué)試卷(解析版) 題型:填空題
若復(fù)數(shù)z=1+ai(i是虛數(shù)單位)的模不大于2,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,PA是圓O的切線,A為切點(diǎn),PO與圓O交于點(diǎn)B、C,AQ?OP,垂足為Q.若PA=4,PC=2,求AQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
若f(x)=是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省南京市高三9月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
從甲、乙、丙、丁4位同學(xué)中隨機(jī)選出2名代表參加學(xué)校會議,則甲被選中的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省南京市高三9月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知雙曲線的漸近線方程為y=±x,則該雙曲線的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆江蘇省南京外國語學(xué)校高二上學(xué)期期中測試數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)變量x,y滿足約束條件,則目標(biāo)函數(shù)z=2x+y的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com