17.在等差數(shù)列{an}中,an=2n一14,試用兩種方法求該數(shù)列前n項(xiàng)和Sn的最小值.

分析 方法一:根據(jù)通項(xiàng)公式an,求出a7=0,n≤7時,an≤0,由此求出該數(shù)列的前n項(xiàng)和的最小值;
方法二:等差數(shù)列的前n項(xiàng)和Sn,利用二次函數(shù)的圖象與性質(zhì)求出它的最小值.

解答 解法一:等差數(shù)列{an}中,an=2n-14,
令an=0,解得n=7,
∴n≤7時,an≤0,
∴該數(shù)列的前6(或7)項(xiàng)和最小,
最小值為S6=S7=$\frac{7×{(a}_{1}{+a}_{7})}{2}$=$\frac{7×(-12+0)}{2}$=-42;
解法二:等差數(shù)列{an}中,an=2n-14,
∴a1=-12,d=2;
∴前n項(xiàng)和Sn=na1+$\frac{n(n-1)d}{2}$=-12n+$\frac{n(n-1)•2}{2}$=n2-13n;
當(dāng)n=$\frac{13}{2}$=6.5,即n=6或7時,
該數(shù)列前n項(xiàng)和最小,最小值是S6=S7=62-13×6=-42.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用問題,也考查了一題多解的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則“a2>0且a1>0”是“數(shù)列{Sn}單調(diào)遞增”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={x|3x-x2>0},集合B={x|x<1},則A∩(∁RB)等于( 。
A.(-3,1]B.(-∞,1]C.[1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=(sinx+cosx)2的最大值與最小正周期分別是(  )
A.2,2πB.2,πC.3,2πD.3,π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系中,曲線C1:$\left\{\begin{array}{l}{x=1+3cosα}\\{y=2+3sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線C2:ρsin($θ+\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)寫出C1的普通方程與C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線C3:θ=$\frac{3π}{4}$(ρ∈R)交C1于M,N兩點(diǎn),P為C2上一點(diǎn),求△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l經(jīng)過點(diǎn)(0,4),斜率為-3,求l的方程(寫成一次函數(shù)的形式).(提示待定系數(shù)法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是任意的非零的平面向量且互不共線以下四個命題:
①($\overrightarrow{a}$$•\overrightarrow$)$\overrightarrow{c}$-($\overrightarrow{c}$$•\overrightarrow{a}$)$\overrightarrow$=0
②|$\overrightarrow{a}$|+|$\overrightarrow$|>|$\overrightarrow{a}$+$\overrightarrow$|
③($\overrightarrow$$•\overrightarrow{c}$)$\overrightarrow{a}$-($\overrightarrow{c}$$•\overrightarrow{a}$)$\overrightarrow$不與$\overrightarrow{c}$垂直
④若$\overrightarrow{a}$$⊥\overrightarrow$,則($\overrightarrow{a}$$•\overrightarrow$)$\overrightarrow{c}$與$\overrightarrow{c}$不平行
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\overrightarrow{a}$=(1,sin2x),$\overrightarrow$=(2,cos2x),其中x∈(0,$\frac{π}{2}$),若|$\overrightarrow{a}•\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,則tanx的值為( 。
A.1B.-1C.$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:tan15°-tan45°+$\frac{\sqrt{3}}{3}$tan15°•tan45°=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案