分析 切點在切線上也在曲線上得到切點坐標滿足兩方程;又曲線切點處的導(dǎo)數(shù)值是切線斜率得第三個方程.
解答 解:設(shè)切點P(x0,y0),則y0=ex0+1,y0=ln(x0+a),
又∵$y′{|}_{x={x}_{0}}$=$\frac{1}{{x}_{0}+a}$=e
∴x0+a=$\frac{1}{e}$,x0=$\frac{1}{e}-a$,
x0=$\frac{1}{e}-a$,代入y0=ln(x0+a),
∴y0=-1,
y0=-1代入y0=ex0+1,
解得x0=-$\frac{2}{e}$,
x0=-$\frac{2}{e}$代入x0+a=$\frac{1}{e}$,
∴a=$\frac{3}{e}$.
故答案為:$\frac{3}{e}$.
點評 本題考查導(dǎo)數(shù)的幾何意義,常利用它求曲線的切線方程,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{x^2}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x0 | ||
C. | f(x)=$\root{3}{x^3}$,g(x)=x | D. | f(x)=x-1,g(x)=$\frac{{{x^2}-1}}{x+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 23 | C. | 12 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=tanx | B. | y=x+1 | C. | y=x3 | D. | y=log2x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com