18.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函數(shù)g(x)=f(x)-k(x-1)恰有4個不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

分析 根據(jù)條件作出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合建立h(x)=k(x-1)與f(x)的大小關(guān)系即可得到結(jié)論.

解答 解:當(dāng)2<x≤3時,1<x-1≤2,
則f(x)=f(x-1)=|(x-1)2-1|,
∵函數(shù)f(x)是偶函數(shù),作出函數(shù)f(x)的圖象如圖:

要使f(x)=k(x-1)恰有4個不同的根,則滿足直線在A、B(包含A,不包含B)之間或C、D(包含C,不包含D)之間,
A點(diǎn)時k=$\frac{3}{4}$,B點(diǎn)時k=$\frac{3}{5}$,C點(diǎn)時k=-$\frac{3}{4}$,D點(diǎn)時k=-$\frac{3}{5}$
∴$\frac{3}{5}$<k≤$\frac{3}{4}$,或-$\frac{3}{4}$≤k<-$\frac{3}{5}$,
故選:A.

點(diǎn)評 本題主要考查函數(shù)與方程的應(yīng)用,作出函數(shù)的圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)圖象y=4sin(6x+$\frac{3π}{5}$)上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再向右平移$\frac{π}{5}$個單位長度,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)圖象的對稱軸方程是x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:填空題

若當(dāng)時,不等式恒成立,則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$,(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓M的方程為ρ2-6ρsinθ=-8.
(1)求圓M的直角坐標(biāo)方程;
(2)若直線l截圓M所得弦長為$\sqrt{3}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A,B的極坐標(biāo)分別為A(2,π),$B(2,\frac{4π}{3})$.
(Ⅰ)求直線AB的直角坐標(biāo)方程;
(Ⅱ)設(shè)M為曲線C上的動點(diǎn),求點(diǎn)M到直線AB距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖是一個物體的三視圖,根據(jù)圖中尺寸(單位:cm),它的體積為32+8πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一個幾何體的三視圖如圖所示,正視圖與俯視圖為全等的等腰三角形,側(cè)視圖由半圓和等腰直角三角形組成,則該幾何體的體積為$\frac{π+2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知x2+y2=1,則x2+xy+2y2的最大值與最小值分別為$\frac{3}{2}$+$\frac{\sqrt{2}}{2}$,$\frac{3}{2}$-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)(0,$\sqrt{3}}$),離心率為$\frac{1}{2}$,左,右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0).
(1)求橢圓C的方程;
(2)若直線l:y=-$\frac{1}{2}$x+m與橢圓交于A,B兩點(diǎn),與圓x2+y2=c2交于C,D兩點(diǎn),且滿足:|AB|=$\frac{{5\sqrt{3}}}{4}$|CD|,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案