直線y=ax-3a+2(a∈R)必過(guò)定點(diǎn)
 
考點(diǎn):一次函數(shù)的性質(zhì)與圖象
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由對(duì)任意實(shí)數(shù)a,直線y=ax-3a+2都過(guò)某定點(diǎn),所以a的系數(shù)和為0,由此能求出該定點(diǎn).
解答: 解:∵y=ax-3a+2=(x-3)a+2,
∴當(dāng)a的系數(shù)x-3=0,即x=3時(shí),
對(duì)任意實(shí)數(shù)a,直線y=ax-3a+2都經(jīng)過(guò)一個(gè)定點(diǎn)(3,2).
故答案為:(3,2).
點(diǎn)評(píng):本題考查直線經(jīng)過(guò)的定點(diǎn)坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,解題時(shí)要關(guān)鍵是把握住a的系數(shù)和為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,在其定義域上為奇函數(shù)的是( 。
A、y=ex+e-x
B、y=-
x
C、y=tan|x|
D、y=ln
1+x
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+2x+alnx在(0,1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知B(-2,0),C(2,0)是△ABC的兩個(gè)頂點(diǎn),且滿足|sinB-sinC|=
1
2
sinA.
(Ⅰ)求頂點(diǎn)A的軌跡方程;
(Ⅱ)過(guò)點(diǎn)C作傾斜角為
π
4
的直線交點(diǎn)A的軌跡于E、F兩點(diǎn),求|EF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex(x2+ax-a+1),其中a是常數(shù).
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在定義域內(nèi)是單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tan(x-
π
4
)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=lg(x+3)-1的圖象,只需把函數(shù)y=lgx的圖象上所有的點(diǎn)( 。
A、向左平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度
B、向右平移3個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度
C、向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度
D、向右平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)轉(zhuǎn)動(dòng)如圖所示的兩個(gè)轉(zhuǎn)盤(pán),記轉(zhuǎn)盤(pán)甲得到的數(shù)為x,轉(zhuǎn)盤(pán)乙得到的數(shù)為y,構(gòu)成數(shù)對(duì)(x,y),則所有數(shù)對(duì)(x,y)中滿足xy=6的概率為(  )
A、
1
2
B、
1
4
C、
1
16
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(sinx,1),
b
=(
1
2
,cosx),且
a
b
,則銳角x為(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
12

查看答案和解析>>

同步練習(xí)冊(cè)答案