分析 (1)由橢圓的離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$$\frac{\sqrt{6}}{3}$,設(shè)出直線方程,利用點到直線的距離公式d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$,代入求得a和b的值,求得橢圓方程;
(2)直線方程代入橢圓方程,利用韋達定理及以CD為直徑的圓過E點,結(jié)合向量知識,即可得到結(jié)論.
解答 解:(1)由e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$$\frac{\sqrt{6}}{3}$,
整理得:a2=3b2,
直線AB的方程為bx-ay-ab=0,
由點到直線的距離公式:d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$,
解得:b=1,a=$\sqrt{3}$,
∴橢圓的方程$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)證明:將y=kx+t代入橢圓方程,整理得(1+3k2)x2+6ktx+3t2-3=0,
△=(6kt)2-12(1+3k2)(t2-1)>0,解得:k2>$\frac{{t}^{2}-1}{3}$,
設(shè)C(x1,y1)、D(x2,y2),則x1+x2=$\frac{-6kt}{1+3{k}^{2}}$,x1•x2=$\frac{3({t}^{2}-1)}{1+3{k}^{2}}$,
∵以CD為直徑的圓過E點,
∴$\overrightarrow{EC}$•$\overrightarrow{ED}$=0,即(x1+1)(x2+1)+y1y2=0,
y1y2=(kx1+t)(kx2+t)
=k2x1•x2+t(x1+x2)+t2,
∴$({k}^{2}+1)\frac{3({t}^{2}-1)}{1+3{k}^{2}}$-$(tk+1)\frac{6kt}{1+3{k}^{2}}$+t2+1=0,
解得:k=$\frac{2{t}^{2}-1}{3t}$,
k2>$\frac{{t}^{2}-1}{3}$,對任意的t>0都成立,則存在k,使得以線段CD為直徑的圓過E點.
$(\frac{2{t}^{2}-1}{3t})^{2}$-$\frac{{t}^{2}-1}{3}$=$\frac{({t}^{2}-1)^{2}+{t}^{2}}{9{t}^{2}}$>0,即k2>$\frac{{t}^{2}-1}{3}$,
所以,對任意的t>0,都存在k,使得以線段CD為直徑的圓過E點.
點評 本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查韋達定理的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 50 | C. | 100 | D. | 1000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 246 | B. | 258 | C. | 280 | D. | 270 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 8 | C. | -8 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com