(Ⅰ)設集合A={1,2,3,…,10},求集合A的所有非空子集元素和的和.
(Ⅱ)已知集合A={-4,2a-1,a2},B={a-1,1-a,9},已知A∩B={9},求實數(shù)a的值.
考點:交集及其運算,元素與集合關(guān)系的判斷
專題:集合
分析:(Ⅰ)先計算出包含元素1的集合:剩下的9個元素組成的集合含有29個子集,包括空集,同理,在集合M的所有非空子集中,元素2、3、4、5、…、10都出現(xiàn)了29次,從而得出集合M的所有非空子集元素和的和.
(Ⅱ)由交集的運算和題意列出方程,求出a的值,再代入集合驗證條件和元素的互異性.
解答: 解:(Ⅰ)由10個元素組成的集合M={1,2,3,4,5,6,7,8,9,10}的子集有:
∅,{1},{2},{3},{4}…{1,2,3,4,5,6,7,8,9,10},…共210個.
先計算出包含元素1的集合:剩下的9個元素組成的集合含有29個子集,
在集合M的所有非空子集中,元素1出現(xiàn)了29次,
同理,在集合M的所有非空子集中,元素2、3、4、5、…、10都出現(xiàn)了29
故集合M的所有非空子集元素和的和為:(1+2+3+4+…+10)×29=55×29=28160;
(Ⅱ)因為A∩B={9},A={-4,2a-1,a2},B={a-1,1-a,9},
所以2a-1=9或a2=9,
解得:a=5或±3
當a=5時,1-a=-4,
當a=-3時,a-1=-4,不滿足A∩B={9},
所以a≠5且a≠-3,
而當a=3時,A={-4,5,9}、B={-2,2,9},滿足題意.
∴實數(shù)a的值為3.
點評:本題考查集合的子集個數(shù)問題,子集與真子集、數(shù)列求和,以及交集的運算,注意驗證條件和元素的互異性,考查運算求解能力與轉(zhuǎn)化思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知命題:“?x∈(1,4),x2-ax+a<0”為真命題,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∩B=B,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù) 
z+3i
1-2i
=1+4i,則 
.
z
=( 。
A、9+iB、9-i
C、2+iD、2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln
ex
e-x
,若f(
e
2016
)+f(
2e
2016
)+…+f(
2015e
2016
)=403(a+b),a>0,b>0,則
4
a
+
1
b
的最小值為( 。
A、5
B、9
C、2
D、
9
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若以曲線y=f(x)上任意一點M(x1,y1)為切點作切線l1,曲線上總存在異于M的點N(x2,y2),以點N為切點做切線L2,且l1∥l2,則稱曲線y=f(x)具有“可平行性”,現(xiàn)有下列命題:
①偶函數(shù)的圖象都具有“可平行性”;
②函數(shù)y=sinx的圖象具有“可平行性”;
③三次函數(shù)f(x)=x3-x2+ax+b具有“可平行性”,且對應的兩切點M(x1,y1),N(x2,y2)的橫坐標滿足x1+x2=
2
3

④要使得分段函數(shù)f(x)=
x+
1
x
(x>m)
ex-1(x<0)
的圖象具有“可平行性”,當且僅當實數(shù)m=1.
其中的真命題是
 
(寫出所有命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f′(x)=
lim
x→x0
f(x)-f(x0)
x-x0
,f(3)=2,f′(3)=2,則
lim
x→3
2x-3f(x)
x-3
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用三段論證明:直角三角形兩銳角之和為90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f′(x)是函數(shù)f(x)=(x2-3)ex的導函數(shù),在區(qū)間[-2,3]任取一個數(shù)x,則f′(x)>0的概率是( 。
A、
2
5
B、
1
2
C、
3
5
D、
4
5

查看答案和解析>>

同步練習冊答案