【題目】過(guò)點(diǎn)A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實(shí)數(shù)a的取值范圍為( )
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<
【答案】D
【解析】解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x﹣a)2+y2=3﹣2a, 可得圓心P坐標(biāo)為(a,0),半徑r= ,且3﹣2a>0,即a< ,
由題意可得點(diǎn)A在圓外,即|AP|= >r= ,
即有a2>3﹣2a,整理得:a2+2a﹣3>0,即(a+3)(a﹣1)>0,
解得:a<﹣3或a>1,又a< ,
可得a<﹣3或1<a< ,
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用圓的一般方程,掌握?qǐng)A的一般方程的特點(diǎn):(1)①x2和y2的系數(shù)相同,不等于0.②沒(méi)有xy這樣的二次項(xiàng);(2)圓的一般方程中有三個(gè)特定的系數(shù)D、E、F,因之只要求出這三個(gè)系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )
A. 當(dāng)時(shí),“”是“”的充要條件
B. 當(dāng)時(shí),“”是“”的充分不必要條件
C. 當(dāng)時(shí),“”是“”的必要不充分條件
D. 當(dāng)時(shí),“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是, 的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列()是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B,P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)設(shè)∠AOP=θ( ≤θ≤ π), = + ,四邊形OAQP的面積為S,f(θ)=( ﹣1)2+ S﹣1,求f(θ)的最值及此時(shí)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓 + =1的焦點(diǎn)在x軸上,過(guò)點(diǎn)(1, )作圓x2+y2=1的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(1, )是離心率為 的橢圓E: + =1(a>b>0)上的一點(diǎn),過(guò)A作兩條直線交橢圓于B、C兩點(diǎn),若直線AB、AC的傾斜角互補(bǔ).
(1)求橢圓E的方程;
(2)試證明直線BC的斜率為定值,并求出這個(gè)定值;
(3)△ABC的面積是否存在最大值?若存在,求出這個(gè)最大值?若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且, 為自然對(duì)數(shù)的底數(shù)).
(1)若曲線在點(diǎn)處的切線斜率為0,且有極小值,
求實(shí)數(shù)的取值范圍.
(2)當(dāng) 時(shí),若不等式: 在區(qū)間內(nèi)恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解高一年級(jí)學(xué)生身高發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位: )頻數(shù)分布表如表1、表2.
表1:男生身高頻數(shù)分布表
表2:女生身高頻數(shù)分布表
(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)表示身高在學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com