【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn
(2)設(shè)數(shù)列{anbn}的前n項和為Tn , 求Tn

【答案】
(1)解:設(shè){an}的公差為d,則由題a3=3,S7=28,

,

∴an=n.

∵在等比數(shù)列{bn}中,b3=4,b4=8,

∴{bn}的公比為 ,∴ ,


(2)由(1)知an=n, ,∴

,

,


【解析】(1)根據(jù)等差數(shù)列,等比數(shù)列的通項公式,前n項和的公式可得結(jié)果,(2)根據(jù)通項公式表示出,再用錯位相減得出Tn.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fn(x)= x3 (n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法證明;
(3)求證: + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>1,b>0)的焦點距為2c,直線l過點(a,0)和(0,b),且點(1,0)到直線l的距離與點(﹣1,0)到直線l的距離之和 .求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP中點,將△PAD沿AD折起,使得PD⊥面ABCD;

(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)若E是PC的中點.求三棱錐A﹣PEB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批產(chǎn)品抽50件測試,其凈重介于13克與19克之間,將測試結(jié)果按如下方式分成六組:第一組,凈重大于等于13克且小于14克;第二組,凈重大于等于14克且小于15克;…第六組,凈重大于等于18克且小于19克.如圖是按上述分組方法得到的頻率分布直方圖.設(shè)凈重小于17克的產(chǎn)品數(shù)占抽取數(shù)的百分比為x,凈重大于等于15克且小于17克的產(chǎn)品數(shù)為y,則從頻率分布直方圖中可分析出x和y分別為( 。

A.0.9,35
B.0.9,45
C.0.1,35
D.0.1,45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=exlnx(x>0),若對 使得方程f(x)=k有解,則實數(shù)a的取值范圍是(
A.(0,ee]
B.[ee , +∞)
C.[e,+∞)
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足an= +2n﹣2,n∈N* , 且S2=6.
(1)求數(shù)列{an}的通項公式;
(2)證明: + + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

購買食品的年支出費用x(萬元)

2.09

2.15

2.50

2.84

2.92

購買水果和牛奶的年支出費用y(萬元)

1.25

1.30

1.50

1.70

1.75

根據(jù)上表可得回歸直線方程 ,其中 ,據(jù)此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為(
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點坐標為,,, P的橫坐標為14,且,是邊上一點,.

(1)求實數(shù)的值及點、的坐標;

(2)為線段(含端點)上的一個動點,試求的取值范圍.

查看答案和解析>>

同步練習冊答案