3.在6枚硬幣A,B,C,D,E,F(xiàn)中,有5枚是真幣,1枚是假幣,5枚真幣重量相同,假幣與真幣的重量不同,現(xiàn)稱得A和B共重10克,C,D共重11克,A,C,E共重16克,則假幣為( 。
A.AB.BC.CD.D

分析 由題意可知,C,D中一定有一個(gè)為假的,分別假設(shè)C為假幣,或D為假幣,去判斷假設(shè)是否成立,問題得以解決.

解答 解:5枚真幣重量相同,則任意兩枚硬幣之和一定為偶數(shù),
由題意可知,C,D中一定有一個(gè)為假的,
假設(shè)C為假幣,則真硬幣的重量為5克,則C的重量為6克,滿足A,C,E共重16克,故假設(shè)成立,
若D為假幣,則真硬幣的重量為5克,不滿足A,C,E共重16克,故假設(shè)不成立,則D是真硬幣,
故選:C

點(diǎn)評(píng) 本題考查了合情推理的問題,關(guān)鍵是利用反證法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{3}$ax3-$\frac{3}{2}$x2+x,a∈R.
( 1)若曲線y=f(x)在x=x0處的切線方程為y=x-2,求a的值;
(2)若f′(x)是f(x)的導(dǎo)函數(shù),且不等式f′(x)≥xlnx恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在曲線$\left\{\begin{array}{l}{x=1+{t}^{2}+{t}^{4}}\\{y={t}^{3}-3t+2}\end{array}\right.$(t為參數(shù))上的點(diǎn)是(  )
A.(0,2)B.(-1,6)C.(1,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某媒體對(duì)“推遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,下面是在某兩單位得到的數(shù)據(jù)(人數(shù)).
贊同反對(duì)合計(jì)
企業(yè)職工102030
事業(yè)職工20525
合計(jì)302555
(1)是否有99.9%的把握認(rèn)為贊同“推遲退休”與職業(yè)有關(guān)?
(2)用分層抽樣的方法從贊同“推遲退休”的人員中隨機(jī)抽取6人作進(jìn)一步調(diào)查分析,將這6人作為一個(gè)樣本,從中任選2人,求恰有1名為企業(yè)職工和1名事業(yè)職工的概率.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x) 為定義在R上的偶函數(shù),當(dāng)0≤x≤2時(shí),y=x;當(dāng)x>2時(shí),y=f(x)的圖象是頂點(diǎn)在P(3,4),且過點(diǎn)A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x) 在(-∞,2)上的解析式,并寫出函數(shù)f(x)的值域和單調(diào)區(qū)間;(值域和單調(diào)區(qū)間直接寫,不用給予證明)
(2)若f(x)<log${\;}_{\frac{1}{2}}$k+2 對(duì)x∈R恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)滿足:f(x)=$\left\{{\begin{array}{l}{{x^2}+1,x∈[0,1)}\\{1-{x^2},x∈[-1,0)}\end{array}}$,且f(x+1)=f(x-1),函數(shù)g(x)=$\frac{x+3}{x+2}$,則方程f(x)=g(x)在區(qū)間[-7,3]上所有實(shí)根之和為( 。
A.-6B.-8C.-11D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,離心率e=$\frac{1}{2}$,若圓x2+y2=$\frac{12}{7}$與直線AB相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過右焦點(diǎn)F的直線l與橢圓交于M,N兩點(diǎn),使得$\frac{1}{|MF|}$+$\frac{1}{|NF|}$為定值,若存在,求出該定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某廠生產(chǎn)A與B兩種產(chǎn)品,每公斤的產(chǎn)值分別為600元與400元,又知每生產(chǎn)1公斤A產(chǎn)品需要電力2千瓦、煤4噸;生產(chǎn)1公斤B產(chǎn)品需要電力3千瓦、煤2噸.但該廠的電力供應(yīng)不得超過100千瓦.煤最多只有120噸.問如何安排生產(chǎn)計(jì)劃(生產(chǎn)A產(chǎn)品7.5公斤、B產(chǎn)品35公斤)才能使產(chǎn)值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx+$\frac{a}{x-1}$(a為常實(shí)數(shù))
(Ⅰ)若?x0∈[e,e2],(e為自然對(duì)數(shù)的底數(shù),且e≈2.71828…),使得f(x0)>0,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若實(shí)數(shù)a>0,函數(shù)f(x)在(0,$\frac{1}{e}$)內(nèi)有極值點(diǎn),當(dāng)x1∈(0,1),x2∈(1,+∞),求證:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

同步練習(xí)冊(cè)答案