5.若直線x+(1+m)y-2=0和直線mx+2y+8=0平行,則m的值為(  )
A.1B.-2C.1或-2D.-$\frac{2}{3}$

分析 由直線平行可得1×2-(1+m)m=0,解方程可得.結(jié)論

解答 解:∵直線x+(1+m)y=2-m和直線mx+2y+8=0平行,
∴1×2-(1+m)m=0,解得m=1或-2,
經(jīng)檢驗(yàn)都符合題意.
故選:C.

點(diǎn)評 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列函數(shù)的單調(diào)區(qū)間:
(1)f(x)=2x(ex-1)-x2;
(2)f(x)=3x2-2lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a7+a9=16,a4=1,則a16的值是(  )
A.22B.16C.15D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線y=x-1過橢圓的右焦點(diǎn)F2且與橢圓交于P,Q兩點(diǎn),若△F1PQ的周長為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過點(diǎn)M(2,0)的直線l與橢圓C交于不同兩點(diǎn)E,F(xiàn),求$\overrightarrow{ME}$•$\overrightarrow{MF}$取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}是等差數(shù)列,且a1+a7+a13=-π,則sina7=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,曲線f(x)=x2和g(x)=2x圍成幾何圖形的面積是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)的定義域?yàn)閇$\frac{1}{3}$,4],g(x)=f(x)+f($\frac{1}{x}$),求g(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖是拋物線型拱橋,當(dāng)水面在l時(shí),拱頂離水面2m,水面寬4m.
(1)按圖中的建系方案,求拋物線的標(biāo)準(zhǔn)方程;
(2)當(dāng)水面下降1m后,水面寬多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線 C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的虛軸端點(diǎn)到一條漸近線的距離為$\frac{2}$,則雙曲線C的離心率為( 。
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案