17.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的短軸長(zhǎng)為$\sqrt{2}$.

分析 由雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1,可得焦點(diǎn)$(±\sqrt{5},0)$,漸近線方程為y=±2.可得:a2-b2=5.設(shè)漸近線y=2x與橢圓C1相交于點(diǎn)M(x1,y1),N(-x1,-y1).漸近線與橢圓方程聯(lián)立可得:${x}_{1}^{2}$,${y}_{1}^{2}$.|MN|2=4(${x}_{1}^{2}$+${y}_{1}^{2}$).|AB|2=(2a)2=4(b2+5),利用|AB|=3|MN|,即可得出.

解答 解:由雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1,可得焦點(diǎn)$(±\sqrt{5},0)$,漸近線方程為y=±2.
∴a2-b2=5.
設(shè)漸近線y=2x與橢圓C1相交于點(diǎn)M(x1,y1),N(-x1,-y1).
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{^{2}+5}+\frac{{y}^{2}}{^{2}}=1}\\{y=2x}\end{array}\right.$,可得${x}_{1}^{2}$=$\frac{^{4}+5^{2}}{5^{2}+20}$,${y}_{1}^{2}$=$\frac{4^{4}+20^{2}}{5^{2}+20}$.
∴|MN|2=4(${x}_{1}^{2}$+${y}_{1}^{2}$)=4($\frac{^{4}+5^{2}}{5^{2}+20}$+$\frac{4^{4}+20^{2}}{5^{2}+20}$)=$\frac{4^{4}+20^{2}}{^{2}+4}$.
|AB|2=(2a)2=4a2=4(b2+5),
∴4(b2+5)=9×$\frac{4^{4}+20^{2}}{^{2}+4}$.
化為:2b2=1.
∴$b=\frac{\sqrt{2}}{2}$,
∴2b=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長(zhǎng)問題、兩點(diǎn)之間的距離公式、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=a(x-1)2+lnx+1,g(x)=f(x)-x,其中a∈R.
(Ⅰ)當(dāng)a=-$\frac{1}{4}$時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x∈[1,+∞)時(shí),若y=f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}x≥1\\ y≤x\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)列{an}中,若a1,a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱{an}為“D-數(shù)列”.
(1)舉出一個(gè)前五項(xiàng)均不為零的“D-數(shù)列”(只要求依次寫出該數(shù)列的前五項(xiàng));
(2)若“D-數(shù)列”{an}中,a1=3,a2=0,數(shù)列{bn}滿足bn=an+an+1+an+2,n=1,2,3,…,寫出數(shù)列{an}的通項(xiàng)公式,并分別判斷當(dāng)n→∞時(shí),an與bn的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);
(3)證明:設(shè)“D-數(shù)列”{an}中的最大項(xiàng)為M,證明:a1=M或a2=M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.離心率為2的雙曲線C與橢圓$\frac{{x}^{2}}{5}$+y2=1有相同的焦點(diǎn),則雙曲線C的標(biāo)準(zhǔn)方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{y}^{2}}{3}$-x2=1C.$\frac{{x}^{2}}{3}$-y2=1D.y2-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,A,B是橢圓的左、右頂點(diǎn),P是橢圓上不同于A,B的一點(diǎn),直線PA,PB斜傾角分別為α,β,則|tanα-tanβ|的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$;
(1)設(shè)z=4x-3y,求z的最大值;
(2)設(shè)z=$\frac{y}{x}$,求z的最小值;
(3)設(shè)z=x2+y2,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.實(shí)數(shù)a,b,c,d滿足下列三個(gè)條件:
①d>c;②a+b=c+d;③a+d<b+c,則a,b,c,d按照從小到大的次序排列為a<c<d<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展開式中,常數(shù)項(xiàng)為40,則$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\frac{cosA+2cosC}{cosA+2cosB}$=$\frac{c}$,則△ABC是直角三角形或等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案