6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展開式中,常數(shù)項(xiàng)為40,則$\int_0^1{x^a}$dx=$\frac{1}{3}$.

分析 運(yùn)用二項(xiàng)式展開式的通項(xiàng)公式,化簡整理,再令x的次數(shù)為0,求出a,再由定積分的運(yùn)算法則,即可求得.

解答 解:(x+$\frac{{\root{3}{a}}}{x}$)6的展開式中的通項(xiàng)公式為:${C}_{6}^{r}(x)^{6-r}(\frac{\root{3}{a}}{x})^{r}$=${C}_{6}^{r}$x6-2r$a\frac{r}{3}$,
令6-2r=0,r=3,
∴${C}_{6}^{3}$a=40,a=2,
則$\int_0^1{x^a}$dx=${∫}_{0}^{1}{x}^{2}dx$=$\frac{1}{3}$x3${丨}_{0}^{1}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查二項(xiàng)式定理的運(yùn)用:求特定項(xiàng),同時考查定積分的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程是ρsin2θ-8cosθ=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy.在直角坐標(biāo)系中,傾斜角為α的直線l過點(diǎn)P(2,0).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)設(shè)點(diǎn)Q和點(diǎn)G的極坐標(biāo)分別為(2,$\frac{3π}{2}$),(2,π),若直線l經(jīng)過點(diǎn)Q,且與曲線C相交于A,B兩點(diǎn),求△GAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的短軸長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知$\overrightarrow{m}$=($\sqrt{2}$cos$\frac{π}{4}$,$\sqrt{2}$sin$\frac{π}{4}$),$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{3π}{4}$,且$\overrightarrow{m}$$•\overrightarrow{n}$=-1.
(1)若$\overrightarrow{OD}$=(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$),且<$\overrightarrow{OD}$,$\overrightarrow{n}$>=$\frac{π}{4}$,求$\overrightarrow{n}$;
(2)若$\overrightarrow{n}$與$\overrightarrow{q}$=(1,0)夾角為$\frac{π}{2}$,△ABC的三內(nèi)角A,B,C中B=$\frac{π}{3}$,設(shè)$\overrightarrow{p}$=(cosA,2cos2$\frac{C}{2}$),求|$\overrightarrow{n}$+$\overrightarrow{p}$|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足條件$\left\{\begin{array}{l}x-2≥0\\ x+y≤6\\ 2x-y≤6\end{array}\right.$,則$\frac{y}{x}$的最大值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c∈R+,求證:
(1)a5≥a4+a-1;
(2)$\frac{2{a}^{2}}{b+c}$+$\frac{2^{2}}{c+a}$+$\frac{2{c}^{2}}{a+b}$≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a,b是互不垂直的兩條異面直線,則下列命題成立的是( 。
A.存在唯一平面α,使得a?α,且b∥αB.存在唯一直線l,使得l∥a,且l⊥b
C.存在唯一直線l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a?α,且b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若$\overrightarrow{a}$=(cosθ-2sinθ,2),$\overrightarrow$=(sinθ,1).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sin2θ-sinθcosθ的值;
(2)若f(θ)=($\overrightarrow{a}$+$\overrightarrow$)$•\overrightarrow$,當(dāng)θ∈[0,$\frac{π}{2}$],求f(θ)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.正方形ABCD的邊長為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=$\frac{3}{7}$,動點(diǎn)P從E出發(fā)沿直線向F運(yùn)動,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角.當(dāng)點(diǎn)P第一次碰到E時,P與正方形的邊碰撞的次數(shù)為14.

查看答案和解析>>

同步練習(xí)冊答案