5.已知i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{2+ai}{2+i}$在復(fù)平面內(nèi)的對應(yīng)的點在第四象限,則實數(shù)a的值可以是( 。
A.-2B.1C.2D.3

分析 把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部大于0,虛部小于0,求得答案.

解答 解:z=$\frac{2+ai}{2+i}$=$\frac{(2+ai)(2-i)}{(2+i)(2-i)}$=$\frac{4+a+(2a-2)i}{5}$,
由于復(fù)數(shù)z=$\frac{2+ai}{2+i}$在復(fù)平面內(nèi)的對應(yīng)的點在第四象限,
∴$\left\{\begin{array}{l}{4+a>0}\\{2a-2<0}\end{array}\right.$,
解得-4<a<1,
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若集合A={x|x2-3x-10>0},集合B={x|-3<x<4},則A∩B等于(  )
A.(-2,4)B.(4,5)C.(-3,-2)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知{an}是公差為4的等差數(shù)列,Sn是其前n項和.若S5=15,則a10的值是( 。
A.11B.20C.29D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,如果輸入的x值是407,y值是259,那么輸出的x值是( 。
A.2849B.37C.74D.77

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x∈R|x2>4},B{x∈R|1≤x≤2},則(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是某幾何體的三視圖,圖中圓的半徑均為1,且俯視圖中兩條半徑互相垂直,則該幾何體的體積為( 。
A.2+πB.$\frac{4}{3}$πC.$\frac{3}{2}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)y=sinωx能夠在某個長度為1的區(qū)間上至少兩次獲得最大值1,且區(qū)間[-$\frac{π}{16}$,$\frac{π}{15}$]上為增函數(shù),則正整數(shù)ω的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.cos(-60°)的值等于( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.我國是嚴(yán)重缺水的國家之一,某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理.為了較為合理地確定居民日常用水的標(biāo)準(zhǔn),有關(guān)部門抽樣調(diào)查了100位居民.如表是這100位居民月均用水量(單位:噸)的頻率分布表,根據(jù)如表解答下列問題:
(1)求表中a,b的值;
分組頻數(shù)頻率
[0,1)100.10
[1,2)a0.20
[2,3)300.30
[3,4)20b
[4,5)100.10
[5,6)100.10
合計1001.00
(2)根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù)、中位數(shù)、平均數(shù).(在試卷上將下面的頻率分布直方圖補充完整).

查看答案和解析>>

同步練習(xí)冊答案