8.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,其中$\frac{π}{2}$<θ<π,則tanθ=( 。
A.-$\sqrt{2}$B.-$\frac{12}{5}$C.-2D.-$\frac{5}{12}$

分析 由題意可得m的方程,由角的范圍排除m的值,再由同角三角函數(shù)基本關(guān)系可得.

解答 解:∵sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$,sin2θ+cos2θ=1,
∴($\frac{m-3}{m+5}$)2+($\frac{4-2m}{m+5}$)2=1,解得m=8,或m=0,
當(dāng)m=0時,sinθ=-$\frac{3}{5}$與$\frac{π}{2}$<θ<π矛盾,應(yīng)舍去,
故m=8,故tanθ=$\frac{sinθ}{cosθ}$=$\frac{m-3}{4-2m}$=-$\frac{5}{12}$
故選:D.

點評 本題考查同角三角函數(shù)基本關(guān)系,解方程去除不合適的m值是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示,山坡的傾角為30°(就是坡面AC與地平面AB1所成的二面角是30°),山坡上有一條與斜坡底線AB成60°角的小路EF,如果某人從點E開始沿這條小路走了40m,問此人離開地平面的高度約為多少米(精確到1m)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
 (1)求函數(shù)f(x)的最小正周期;
(2)若f(x0-$\frac{π}{12}$)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知實數(shù)x、y滿足不等式$\left\{\begin{array}{l}{x+3y≥3}\\{2x-y-3≤0}\\{x-my+1≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=x+y最大值為9,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.分別求列函數(shù)的值域.
(1)f(x)=$\frac{\sqrt{4x-{x}^{2}}}{x+2}$;
(2)y=x+$\sqrt{4-{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=2x3-3x2-24x+12,求f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)=-1019.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(2x2+3x+1)6的展開式中,x2的系數(shù)是( 。
A.72B.147C.132D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等差數(shù)列{an}中,若S20=170,則a7+a8+a10+a17=34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.四棱錐E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,點F為DE的中點.
(Ⅰ)求證:CF∥平面EAB;
(Ⅱ)若CF⊥AD,求四棱錐E-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案