12.在空間直角坐標系O-xyz中,一個四面體的頂點坐標分別是(0,0,2),(2,0,0),(2,1,1),(0,1,1).若畫該四面體三視圖時,正視圖以zOy平面為投影面,則得到的側視圖是( 。
A.B.C.D.

分析 由題意,利用空間直角坐標系,借助于正方體在坐標系中畫出幾何體,再畫出它的側視圖.

解答 解:由題意,畫出直角坐標系,在坐標系中各點對應位置如圖①所示;
以平面zOy為投影面,得到的側視圖如圖②所示:
故選:C.

點評 本題考查了空間幾何體的三視圖與應用問題,解題的關鍵是有豐富的空間想象能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.虛數(shù)z滿足z+$\frac{1}{z}$∈R,則|z|=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知$\overrightarrow a$=(1,1,1),$\overrightarrow b$=(0,y,1)(0≤y≤1),則cos<$\overrightarrow a$,$\overrightarrow b$>最大值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若AB=4,AC=5,且cosC=$\frac{4}{5}$,則sinB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設△ABC的內角A、B、C的對邊長分別為a、b、c,若bsinB-csinC=a,且△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,則B=77.5°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在△ABC中,AB=3,AC=4,M是邊BC的中點,則$\overrightarrow{AM}•\overrightarrow{BC}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,其前n項和為Sn
(Ⅰ)求{an}的通項公式及Sn;
(Ⅱ)令bn=$\frac{1}{{{S_n}-n}}$(n∈N*),求數(shù)列{bn}的前8項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.復數(shù)z=1+ai(a∈R)在復平面對應的點在第一象限,且|$\overrightarrow{z}$|=$\sqrt{5}$,則z的虛部為(  )
A.2B.4C.2iD.4i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.直角三角形ABC的三邊長分別是a,b,c,且c為斜邊的長.
(1)若a,b,c成等比數(shù)列,且a=2,求c的值;
(2)已知a,b,c均為正整數(shù),若a,b,c是三個連續(xù)的整數(shù),求三角形ABC的面積.

查看答案和解析>>

同步練習冊答案