2.直角三角形ABC的三邊長分別是a,b,c,且c為斜邊的長.
(1)若a,b,c成等比數(shù)列,且a=2,求c的值;
(2)已知a,b,c均為正整數(shù),若a,b,c是三個連續(xù)的整數(shù),求三角形ABC的面積.

分析 (1)根據(jù)等比數(shù)列的性質(zhì),結(jié)合勾股定理,即可求出c的值;
(2)根據(jù)三邊長為三個連續(xù)的正整數(shù),利用勾股定理,即可求出三邊的長,從而求出三角形的面積.

解答 解:(1)直角△ABC中,三邊長a,b,c成等比數(shù)列,且a=2,
∴c=$\frac{^{2}}{2}$;
又c2=a2+b2=22+b2
∴c2=4+2c,
解得c=1+$\sqrt{5}$或c=1-$\sqrt{5}$(不合題意,舍去),
∴c的值為1+$\sqrt{5}$;
(2)直角△ABC中,三邊長a,b,c,且c為斜邊,
當(dāng)a,b,c為三個連續(xù)的正整數(shù)時,
(b-1)2+b2=(b+1)2
解得b=4或b=0(不合題意,舍去);
∴a=3,c=5,
∴△ABC的面積為S=$\frac{1}{2}$ab=$\frac{1}{2}$×3×4=6.

點評 本題考查了等比數(shù)列與等差數(shù)列的應(yīng)用問題,也考查了直角三角形中勾股定理的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在空間直角坐標(biāo)系O-xyz中,一個四面體的頂點坐標(biāo)分別是(0,0,2),(2,0,0),(2,1,1),(0,1,1).若畫該四面體三視圖時,正視圖以zOy平面為投影面,則得到的側(cè)視圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$=(ksinx,cosx),$\overrightarrow$=($\sqrt{3}$cosx,-kcosx),k>0,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最大值為1.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c以f(A)=l,a=2,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.集合A={a+3,log2(a+1)},B={1,b},A=B,則b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{|x-1|≤1}\\{y≥0}\\{y≤x+1}\end{array}\right.$,則下列結(jié)論中正確的是( 。
A.2x-y≥0B.2x-y≤3C.x+y≤6D.x+y<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{a,n=1}\\{4n+(-1)^{n}(8-2a),n≥2}\\{\;}\end{array}\right.$,若對任意n∈N+,an<an+1恒成立,則a的取值范圍是(3,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若等比數(shù)列{an}的公比q滿足|q|<1,且a2a4=4,a3+a4=3,則$\lim_{n→∞}$(a1+a2+…+an)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)全集U=R,若集合A={x|y=log2(4-x2)},集合B={y|y=2x-1,x∈R},則集合∁U(A∩B)=( 。
A.(-1,2)B.[-1,2)C.(-∞,-1]∪[2,+∞)D.(-∞,-1)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知集合A={0,1},B={x|x=ab,a∈A,b∈A},則B的子集有4個,分別是∅,{0},{1},{0,1}.

查看答案和解析>>

同步練習(xí)冊答案