【題目】過點作拋物線的兩條切線,切點分別為,,,分別交軸于,兩點,為坐標原點,則與的面積之比為( )
A. B. C. D.
【答案】C
【解析】
求出切線方程,得出A,B兩點坐標,計算E,F(xiàn)坐標,再計算三角形面積得出結(jié)論.
設(shè)過P點的直線方程為:y=k(x﹣2)﹣1,代入x2=4y可得x2﹣4kx+8k+4=0,①
令△=0可得16k2﹣4(8k+4)=0,解得k=1.
∴PA,PB的方程分別為y=(1+)(x﹣2)﹣1,y=(1﹣)(x﹣2)﹣1,
分別令y=0可得E(,0),F(xiàn)(1﹣,0),即|EF|=2.
∴S△PEF=
解方程①可得x=2k,
∴A(2+2,3+2),B(2﹣2,3﹣2),
∴直線AB方程為y=x+1,|AB|=8,
原點O到直線AB的距離d=,
∴S△OAB=,
∴△PEF與△OAB的面積之比為.
故答案為:C
科目:高中數(shù)學 來源: 題型:
【題目】某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體1000名學生中隨機抽取了100名學生的體檢表,并得到如圖的頻率分布直方圖.
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學生進行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關(guān)系?
(3)在(2)中調(diào)查的100名學生中,按照分層抽樣在不近視的學生中抽取了9人,進一步調(diào)查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50的學生人數(shù)為,求的分布列和數(shù)學期望.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費中手機支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學生在暑期社會活動中針對人們生活中的支付方式進行了調(diào)查研究. 采用調(diào)查問卷的方式對100名18歲以上的成年人進行了研究,發(fā)現(xiàn)共有60人以手機支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.
(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;
(2)某商家為了鼓勵人們使用手機支付,做出以下促銷活動:凡是用手機支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調(diào)查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設(shè)銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某汽車廠上年度生產(chǎn)汽車的投入成本為10萬元/輛,出廠價為12萬元/輛,年銷售量為10000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品質(zhì)量,適度增加投入成本.若每輛車投入成本增加的比例為(),則出廠價相應(yīng)地提高比例為,同時預(yù)計年銷售量增加的比例為,已知年利潤=(出廠價-投入成本)×年銷售量.
(1)寫出本年度預(yù)計的年利潤與投入成本增加的比例的關(guān)系式;
(2)為使本年度的年利潤比上年度有所增加,則投入成本增加的比應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】火電廠、核電站的循環(huán)水自然通風冷卻塔是一種大型薄殼型構(gòu)筑物。建在水源不十分充足的地區(qū)的電廠,為了節(jié)約用水,需建造一個循環(huán)冷卻水系統(tǒng),以使得冷卻器中排出的熱水在其中冷卻后可重復使用,大型電廠采用的冷卻構(gòu)筑物多為雙曲線型冷卻塔.此類冷卻塔多用于內(nèi)陸缺水電站,其高度一般為75~150米,底邊直徑65~120米. 雙曲線型冷卻塔比水池式冷卻構(gòu)筑物占地面積小,布置緊湊,水量損失小,且冷卻效果不受風力影響;它比機力通風冷卻塔維護簡便,節(jié)約電能;但體形高大,施工復雜,造價較高.(以上知識來自百度,下面題設(shè)條件只是為了適合高中知識水平,其中不符合實際處請忽略.)
(1)如圖為一座高100米的雙曲線冷卻塔外殼的簡化三視圖(忽略壁厚),其底面直徑大于上底直徑,已知其外殼主視圖與左視圖中的曲線均為雙曲線,高度為100,俯視圖為三個同心圓,其半徑分別40,,30,試根據(jù)上述尺寸計算視圖中該雙曲線的標準方程(為長度單位米);
(2)試利用課本中推導球體積的方法,利用圓柱和一個倒放的圓錐,計算封閉曲線:,,繞軸旋轉(zhuǎn)形成的旋轉(zhuǎn)體的體積多少?(用表示).(用積分計算不得分)現(xiàn)已知雙曲線冷卻塔是一個薄殼結(jié)構(gòu),為計算方便設(shè)其內(nèi)壁所在曲線也為雙曲線,其壁最厚為0.4(底部),最薄處厚度為0.3(喉部,即左右頂點處),試計算該冷卻塔內(nèi)殼所在的雙曲線標準方程是?并計算本題中的雙曲線冷卻塔的建筑體積(內(nèi)外殼之間)大約是多少;(計算時取3.14159,保留到個位即可)
(3)冷卻塔體型巨大,造價相應(yīng)高昂,本題只考慮地面以上部分的施工費用(建筑人工和輔助機械)的計算,鋼筋土石等建筑材料費用和和其它設(shè)備等施工費用不在本題計算范圍內(nèi).超高建筑的施工(含人工輔助機械等)費用隨著高度的增加而增加,現(xiàn)已知:距離地面高度30米(含30米)內(nèi)的建筑,每立方米的施工費用平均為:400元/立方米;30米到40米(含40米)每立方米的施工費用為800元/立方米;40米以上,平均高度每增加1米,每立方米的施工費用增加100元.試計算建造本題中冷卻塔的施工費用(精確到萬元).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)組織語文、數(shù)學學科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學科目成績?yōu)槎泉劦目忌?/span>人.
(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);
(Ⅱ)用隨機抽樣的方法從獲得數(shù)學和語文二等獎的學生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,,,,,記動點的軌跡為.
(1)求曲線的軌跡方程.
(2)若斜率為的直線與曲線交于不同的兩點、,與軸相交于點,則是否為定值?若為定值,則求出該定值;若不為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com