【題目】已知,,,,,,記動點的軌跡為.
(1)求曲線的軌跡方程.
(2)若斜率為的直線與曲線交于不同的兩點、,與軸相交于點,則是否為定值?若為定值,則求出該定值;若不為定值,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】下列語句中正確的個數(shù)是( )
①,函數(shù)都不是偶函數(shù);
②命題“若,則”的否命題是真命題;
③若或為真,則,非均為真;
④已知向量,則“”的充分不必要條件是“與夾角為銳角”.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,
且側面PAD⊥底面ABCD,E 為側棱PD的中點。
(1)求證:PB//平面EAC;
(2)求證:AE⊥平面PCD;
(3)當為何值時,PB⊥AC ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)為定義在R上的偶函數(shù),且0≤x≤2時,y=x;當x>2時,y=f(x)的圖象是頂點為P(3,4)且過點A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)寫出函數(shù)f(x)的值域和單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在實數(shù)m,使得在[-1,3]上f(x)的圖象恒在直線y=2mx+1的上方?若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查觀眾對某熱播電視劇的喜愛程度,某電視臺在甲、乙兩地各隨機抽取了名觀眾作問卷調查,得分統(tǒng)計結果如圖所示.
(1)計算甲、乙兩地被抽取的觀眾問卷的平均分與方差.
(2)若從甲地被抽取的名觀眾中再邀請名進行深入調研,求這名觀眾中恰有人的問卷調查成績在分以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】旅游業(yè)作為一個第三產業(yè),時間性和季節(jié)性非常強,每年11月份來臨,全國各地就相繼進入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺做宣傳推廣,銷售特惠旅游產品.該公司統(tǒng)計了活動剛推出一周內產品的銷售數(shù)量,用表示活動推出的天數(shù),用表示產品的銷售數(shù)量(單位:百件),統(tǒng)計數(shù)據(jù)如下表所示.
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點圖,根據(jù)已有的函數(shù)知識,發(fā)現(xiàn)樣本點分布在某一條指數(shù)型函數(shù)的周圍.為求出該回歸方程,相關人員確定的研究方案是:先用其中5個數(shù)據(jù)建立關于的回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.試回答下列問題:
(1)現(xiàn)令,若選取的是這5組數(shù)據(jù),已知,,請求出關于的線性回歸方程(結果保留一位有效數(shù)字);
(2)若由回歸方程得到的估計數(shù)據(jù)與選出的檢驗數(shù)據(jù)的誤差均不超過,則認為得到的回歸方程是可靠的,試問(1)中所得的回歸方程是否可靠?
參考公式及數(shù)據(jù):對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, ;;.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點與橢圓:的一個頂點重合,且這個頂點與橢圓的兩個焦點構成的三角形面積為.
(1)求橢圓的方程;
(2)若橢圓的上頂點為,過作斜率為的直線交橢圓于另一點,線段的中點為,為坐標原點,連接并延長交橢圓于點,的面積為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com