12.設(shè)等差數(shù)列{an}前n項(xiàng)和為Sn,且a5+a6=24,S11=143.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由已知列方程組求得首項(xiàng)和公差,代入等差數(shù)列的通項(xiàng)公式求得答案;
(2)把(1)中求得的通項(xiàng)公式代入bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,然后利用裂項(xiàng)相消法求得數(shù)列{bn}的前n項(xiàng)和Tn

解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
由a5+a6=24,S11=143,
得$\left\{\begin{array}{l}{2{a}_{1}+9d=24}\\{11({a}_{1}+5d)=143}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴Tn=b1+b2+…+bn=$\frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3})$=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{6n+9}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的前n項(xiàng)和,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,多面體ABCDEF中,BA,BC,BE兩兩垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(I)若點(diǎn)G在線段AB上,且BG=3GA,求證:CG∥平面ADF;
(II)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y之間的線性回歸方程為$\widehat{y}$=-0.7x+10.3,且變量x,y之間的一組相關(guān)數(shù)據(jù)如表所示,則下列說(shuō)法錯(cuò)誤的是( 。
x681012
y6m32
A.變量x,y之間呈現(xiàn)負(fù)相關(guān)關(guān)系
B.m=4
C.可以預(yù)測(cè),當(dāng)x=11時(shí),y=2.6
D.由表格數(shù)據(jù)知,該回歸直線必過(guò)點(diǎn)(9,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD的底面為平行四邊形,M為PC中點(diǎn).
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且2Sn=an2+n-1(n∈N+).
(Ⅰ)求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知x,y的取值如表所示:從散點(diǎn)圖分析,x與y線性相關(guān),且$\widehat{y}$=kx+1,則k=0.8.
x0134
y0.91.93.24.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}中,a10=19公差d≠0,且a1,a2,a5成等比數(shù)列.
(1)求an;
(2)設(shè)bn=an2n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在平面直角坐標(biāo)系中,定義:一條直線經(jīng)過(guò)一個(gè)點(diǎn)(x,y),若x,y都是整數(shù),就稱該直線為完美直線,這個(gè)點(diǎn)叫直線的完美點(diǎn),若一條直線上沒(méi)有完美點(diǎn),則就稱它為遺憾直線.現(xiàn)有如下幾個(gè)命題:
①如果k,b都是無(wú)理數(shù),那么直線y=kx+b一定是遺憾直線;
②“直線y=kx+b是完美直線”的充要條件是“k,b都是有理數(shù)”;
③存在恰有一個(gè)完美點(diǎn)的完美直線;
④完美直線l經(jīng)過(guò)無(wú)窮多個(gè)完美點(diǎn),當(dāng)且僅當(dāng)直線l經(jīng)過(guò)兩個(gè)不同的完美點(diǎn).
其中正確的命題是( 。
A.②③B.②③④C.①③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將函數(shù)f(x)=cos(ωx-$\frac{π}{2}}$)(ω>0)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,所得的圖象經(jīng)過(guò)點(diǎn)$({\frac{3π}{4},0})$,則ω的最小值是(  )
A.$\frac{1}{3}$B.1C.$\frac{5}{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案