函數(shù)f(x)=
13
x3-2x2+3x-1的單調(diào)遞增區(qū)間為
(-∞,1),(3,+∞)
(-∞,1),(3,+∞)
分析:求函數(shù)f(x)=
1
3
x3-2x2+3x-1的單調(diào)遞增區(qū)間,先求該函數(shù)的導(dǎo)函數(shù),讓導(dǎo)函數(shù)大于0求解x的范圍.
解答:解:因為f(x)=
1
3
x3-2x2+3x-1,所以f(x)=x2-4x+3,
由f(x)=x2-4x+3>0,得:x<1或x>3,
所以原函數(shù)的單調(diào)增區(qū)間為(-∞,1),(3,+∞).
故答案為(-∞,1),(3,+∞).
點評:本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x-lnx(x>0),則y=f(x)(  )
A、在區(qū)間(
1
e
,1),(l,e)內(nèi)均有零點
B、在區(qū)間(
1
e
,1),(l,e)內(nèi)均無零點
C、在區(qū)間(
1
e
,1)內(nèi)無零點,在區(qū)間(l,e)內(nèi)有零點
D、在區(qū)間(
1
e
,1)內(nèi)有零點,在區(qū)間(l,e)內(nèi)無零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3x+
3
,
(1)f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值;
(2)歸納猜想一般性的結(jié)論,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x-lnx,則y=f(x)
 
.(填寫正確命題的序號)
①在區(qū)間(
1
e
,1),(1,e)內(nèi)均有零點; ②在區(qū)間(
1
e
,1)內(nèi)有零點,在區(qū)間(1,e)內(nèi)無零點;
③在區(qū)間(
1
e
,1),(1,e)內(nèi)均無零點; ④在區(qū)間(
1
e
,1)內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x       (x<1)
(x-5)2-3  (x≥1)
,則f(3-
1
2
)-f(5+3-
3
4
 
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
13x-1
+a (x≠0),則“f(1)=1”是“函數(shù)f(x)為奇函數(shù)”的
 
條件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填寫)

查看答案和解析>>

同步練習(xí)冊答案