如圖,AB為圓O的直徑,點E、F在圓O上,且AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直,已知AB=2,AD=EF=1.
(Ⅰ)設FC的中點為M,求證:OM∥平面DAF;
(Ⅱ)設平面CBF將幾何體EF-ABCD分割成的兩個錐體的體積分別為VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
(Ⅰ)詳見解析;(Ⅱ)4.
解析試題分析:(Ⅰ)在平面內找一條直線與已知直線平行,通過線線平行可證;(Ⅱ)通過等體積法來求;
試題解析:(Ⅰ)如圖,設FD的中點為N,連結AN,MN.
∵M為FC的中點,
∴MN∥CD,MN=CD.
又AO∥CD,AO=CD,
∴MN∥AO,MN=AO,
∴MNAO為平行四邊形,
∴OM∥AN,
又OM?平面DAF,AN?平面DAF,
∴OM∥平面DAF. 6分
(Ⅱ)如圖,過點F作FG⊥AB于G.
∵平面ABCD⊥平面ABEF,
∴FG⊥平面ABCD,
∴VF-ABCD=SABCD·FG=FG.
∵CB⊥平面ABEF,
∴VF-CBE=VC-BEF=S△BEF·CB=·EF·FG·CB=FG.
∴VF-ABCD:VF-CBE=4. 13分
考點:線面平行的證明;椎體的體積求法.
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點,且2BE=EP.
(1)證明:AC⊥DE;
(2)若PC=BC,求二面角E-AC一P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中,,,為的中點,分別在線段上,且交于,把沿折起,如下圖所示,
(1)求證:平面;
(2)當二面角為直二面角時,是否存在點,使得直線與平面所成的角為,若存在求的長,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知為圓的直徑,點為線段上一點,且,點為圓上一點,且.點在圓所在平面上的正投影為點,.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com