數(shù)列的前n項和為,存在常數(shù)A,B,C,使得對任意正整數(shù)n都成立.
⑴若數(shù)列為等差數(shù)列,求證:3A B+C=0;
⑵若設(shè)數(shù)列的前n項和為,求;
⑶若C=0,是首項為1的等差數(shù)列,設(shè)數(shù)列的前2014項和為P,求不超過P的最大整數(shù)的值.

(1)詳見解析,(2),(3)2014.

解析試題分析:(1)研究特殊數(shù)列問題,一般從其特征量出發(fā). 因為為等差數(shù)列,設(shè)公差為,由,得,根據(jù)恒等式對應項系數(shù)相等得:所以代入得:. (2)本題實質(zhì)為求通項. 因為,所以,當時,, 所以,而,所以數(shù)列是首項為,公比為的等比數(shù)列,所以.由錯位相減法得,(3)因為是首項為的等差數(shù)列,由⑴知,公差,所以.化簡數(shù)列通項,再由裂項相消法得,所以不超過的最大整數(shù)為2014.
解 ⑴因為為等差數(shù)列,設(shè)公差為,由,
,           2分
對任意正整數(shù)所以                   4分
所以  .                       6分
⑵ 因為,所以,
時,,
所以,而,
所以數(shù)列是首項為,公比為的等比數(shù)列,所以.      9分
于是.所以①,,②
.
所以.                                12分
⑶ 因為是首項為的等差數(shù)列,由⑴知,公差,所以.

,                    14分
所以不超過的最大整數(shù)為2014.                         16分
考點:求數(shù)列通項,錯位相減法及裂項相消法求和

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足).
(1)若數(shù)列是等差數(shù)列,求數(shù)列的前項和;
(2)證明:數(shù)列不可能是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(1)求{an}的通項公式.
(2)設(shè){bn}是首項為1,公差為2的等差數(shù)列,求{an+bn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的各項都為正數(shù),。
(1)若數(shù)列是首項為1,公差為的等差數(shù)列,求;
(2)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知{an}是公比為q的等比數(shù)列,且am、am+2、am+1成等差數(shù)列.
(1)求q的值;
(2)設(shè)數(shù)列{an}的前n項和為Sn,試判斷Sm、Sm+2、Sm+1是否成等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,滿足,,
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足,對于任意給定的正整數(shù),是否存在正整數(shù)(),使得成等差數(shù)列?若存在,試用表示,;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等差數(shù)列中,,公差為,其前項和為,在等比數(shù)列 中,,公比為,且
(1)求;
(2)設(shè)數(shù)列滿足,求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列中,
(1)求的通項公式;
(2)設(shè)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)各項均為正數(shù)的數(shù)列的前n項和為Sn,已知,且對一切都成立.
(1)若λ=1,求數(shù)列的通項公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.

查看答案和解析>>

同步練習冊答案