7.(1)已知角α的終邊經(jīng)過點(diǎn)P(4,-3),求2sinα+cosα的值.
(2)已知角α的終邊上一點(diǎn)$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$,求cosα及tanα.

分析 (1)由條件利用任意角的三角函數(shù)的定義,求得sinα和cosα 的值,可得2sinα+cosα 的值.
(2)由題意可得sinα=$\frac{\sqrt{2}m}{4}$=$\frac{m}{\sqrt{{3+m}^{2}}}$,由此求得m的值,可得cosα及tanα的值.

解答 解:(1)∵已知角α的終邊經(jīng)過點(diǎn)P(4,-3),∴x=4,y=-3,r=|OP|=5,
∴sinα=$\frac{y}{r}$=-$\frac{3}{5}$,cosα=$\frac{x}{r}$=$\frac{4}{5}$,∴2sinα+cosα=-$\frac{6}{5}$+$\frac{4}{5}$=-$\frac{2}{5}$.
(2)已知角α的終邊上一點(diǎn)$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$=$\frac{m}{\sqrt{3{+m}^{2}}}$,
∴m=±$\sqrt{5}$,∴當(dāng)$m=\sqrt{5}$時(shí),$cosα=-\frac{{\sqrt{6}}}{4},tanα=-\frac{{\sqrt{15}}}{3}$;當(dāng)$m=-\sqrt{5}$時(shí),$cosα=-\frac{{\sqrt{6}}}{4},tanα=\frac{{\sqrt{15}}}{3}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.假設(shè)你家訂了一份牛奶,奶哥在早上6:00---7:00之間隨機(jī)地把牛奶送到你家,而你在早上6:30---7:30之間隨機(jī)地離家上學(xué),則你在離開家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,且焦點(diǎn)到漸近線的距離為$\sqrt{3}$,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示,4個(gè)小動(dòng)物換座位,開始時(shí)鼠,猴,兔,貓分別坐1,2,3,4號(hào)座位,如果第1次前后排動(dòng)物互換座位,第2次左右列動(dòng)物互換座位,第3次前后排動(dòng)物互換座位,…,這樣交替進(jìn)行下去,那么第2 015次互換座位后,小兔坐在( 。┨(hào)座位上.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且$sinα=\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}}$的值,
(2)化簡(jiǎn)$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)cos(α-nπ)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若平面向量$\overrightarrow a$=(1,x)和$\overrightarrow b$=(-2,1)互相平行,其中x∈R,則x=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若${(2-x)^4}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}$,則a1+a2+a3+a4=(  )
A.-15B.15C.-16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知過拋物線G:y2=2px(p>0)焦點(diǎn)F的直線l與拋物線G交于M,N兩點(diǎn)(M點(diǎn)在x軸上方),滿足$\overrightarrow{MF}$=3$\overrightarrow{FN}$,|MN|=$\frac{16}{3}$,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-$\frac{1}{3}$)2+(y-$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$B.(x-$\frac{1}{3}$)2+(y+$\frac{2\sqrt{3}}{3}$)2=$\frac{16}{3}$
C.(x-3)2+(y-2$\sqrt{3}$)2=16D.(x-3)2+(y+2$\sqrt{3}$)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線y=x-1被拋物線y2=8x截得線段的中點(diǎn)縱坐標(biāo)為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案