9.求函數(shù)f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$的最小正周期與最值.

分析 將f(x)轉(zhuǎn)化成f(x)=5sin(2x-$\frac{π}{3}$),根據(jù)正弦函數(shù)性質(zhì)即可求得f(x)的最小正周期與最值.

解答 解:f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$,
=$\frac{5}{2}$sin2x-$\frac{5\sqrt{3}}{2}$(2cos2x-1),
=$\frac{5}{2}$sin2x-$\frac{5\sqrt{3}}{2}$cos2x,
=5sin(2x-$\frac{π}{3}$),
∴最小正周期T=$\frac{2π}{ω}$=π,
最大值為5,最小值為-5.

點(diǎn)評(píng) 本題考查倍角公式、輔助角公式,正弦函數(shù)的周期性及最值,是三角函數(shù)的簡(jiǎn)單綜合應(yīng)用,為基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.有一段演繹推理是這樣的:“所有9的倍數(shù)都是3的倍數(shù),某奇數(shù)是9的倍數(shù),故某奇數(shù)是3的倍數(shù)”.那么,這個(gè)演繹推理( 。
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.沒(méi)有錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,其體積為2$\sqrt{5}$,正(主)視圖為以BC為底,高為$\sqrt{5}$的等腰三角形,則m+n的最小值為( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=$\left\{\begin{array}{l}{-{x}^{2}+3x+1,x<0}\\{2,x=0}\\{2{x}^{2}-x-3,x>0}\end{array}\right.$在[-3,3]的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求函數(shù)y=2-$\frac{4}{3}$sinx-cos2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知α∈($\frac{π}{2}$,π),且tan(α+$\frac{π}{4}$)=-$\frac{1}{7}$,則sin(2α-π)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,且a≠1),x>0}\end{array}\right.$的圖象上關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是0<a<$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.定義在R上的函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx+|sinx-cosx|),給出下列結(jié)論:
①f(x)為周期函數(shù)      
 ②f(x)的最小值為-1
③當(dāng)且僅當(dāng)x=2kπ(k∈Z)時(shí),f(x)取得最小值
④當(dāng)且僅當(dāng)2kπ-$\frac{π}{2}$<x<(2k+1)π,(k∈Z)時(shí),f(x)>0
⑤f(x)的圖象上相鄰最低點(diǎn)的距離為2π.
其中正確的結(jié)論序號(hào)是( 。
A.①④⑤B.①③④C.①②④D.②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥2}\\{f(x+2),x<2}\end{array}\right.$,則f(-log23)=$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案