lim
n→∞
an
n+2
=1,則常數(shù)a=
 
考點:極限及其運算
專題:導數(shù)的概念及應用
分析:利用極限的運算性質即可得出.
解答: 解:∵原式=
lim
n→∞
a
1+
2
n
=a=1.
∴a=1.
故答案為:1.
點評:本題考查了極限的運算性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為(2
2
,0),且橢圓Γ上一點M到其兩焦點F1,F(xiàn)2的距離之和為4
3

(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)設直線l:y=x+m(m∈R)與橢圓Γ交于不同兩點A,B,且|AB|=3
2
.若點P(x0,2)滿足|
PA
|=|
PB
|,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
16
+
y2
9
=1中,以點M(-1,2)為中點的弦所在的直線斜率為( 。
A、
9
16
B、
9
32
C、
9
64
D、-
9
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
;且拋物線y2=4
3
x的焦點恰好是橢圓C的一個焦點.求過點D(0,3)作直線L與橢圓C交于A,B兩點,點N滿足
ON
=
OA
+
OB
,O為原點.求四邊形OANB面積的最大值,并求此時直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果a2+b2=
1
2
c2,那么直線ax+by-c=0與圓x2+y2=1的位置關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A(x1,y1),B(x2,y2).
(1)求a的取值范圍;
(2)設x1=
5
12
x2,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓
x2
4
+y2=1的左右焦點,若P是第一象限內該橢圓上的一點,且向量
PF1
PF2
=-
5
4
,則點,P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從1、2、3…n中任取三個不同的數(shù),則取出的三個數(shù)可作為三角形三邊邊長的概率為
 
.(用n表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=logax在[2,8]上的最大值與最小值之和為4.
(1)已知g(x)為奇函數(shù),當x≥0時,g(x)=f(x+1),求x<0時,求g(x)的解析式;
(2)解關于x的不等式:-1<g(x)<
1
2

查看答案和解析>>

同步練習冊答案